

Conference on Advancing MLT Atmospheric Studies through Commercial Suborbital Vehicles

February 27-28, 2025

Final Report

NSF Award ID 2432335

Dr. Dianne DeTurris
Professor, Aerospace Engineering, Cal Poly

Dustin DeBrum
Director Operations, Cal Poly Digital Transformation Hub

May 1, 2025

Table of Contents

<i>Introduction</i>	4
Conference Team	5
Dr. Dianne DeTurris	5
Dustin DeBrum	5
Dr. Kurt Colvin.....	5
Anmol Sharma	6
Conference Summary	7
The Science of the Mesosphere-Lower Thermosphere (MLT).....	7
Space to Grow	8
The Next Generation of Suborbital Vehicles	8
Rocket Engine Testing	10
Paso Robles Spaceport	11
MLT Research Case Study	12
Engaging Students in Space Technology Research	13
Space IOT Research Case Study	14
Local Community STEM	15
From the Ground Up to Middle Out	15
PolySat Program	16
Cal Poly AMSAT Project	17
Paso Robles Air and Spaceport Licensing Update	17
Bridging the Gap	18
Conclusions and Next Steps	20
Accomplishments.....	20
What was the impact	21
Intellectual Merit of the Event	21
Conclusions	22
Next Steps	23
Appendix A – List of Registered Participants	25
Appendix B – Agenda	28
Appendix C - Presentations	30
C1 - The Science of the Mesosphere-Lower Thermosphere (MLT) –Smith	30

C2 - Space to Grow – Shull	45
C3 - Dawn Aerospace: Next Generation of Suborbital Vehicles – Rodway	57
C4 - Stellar Exploration: Rocket Testing Operations – Meisberger.....	68
C5 - Paso Robles Spaceport Vision, Educational Programs, & Opportunities – Britton, Sloan, & Colvin.....	72
C6 - MLT Research Case Study – Smith.....	82
C7 - Engaging Students in Space Technology Research – DeTurris	93
C8 - Space IOT Research Case Study – Derickson.....	103
C9 - Local Community STEM Showcase & Interest – Johnston, Acevedo, Dart, & Williams	116
C10 - From the Ground Up to Middle Out: Drones & Balloons for Assistive Suborbital Observations – Jacob	117
C11 - Polysat Program – Bleakley	136
C12 - Paso Robles Air and Spaceport Licensing Update – Scandalis	141
C13 - Understanding Spaceport, Vehicle, and Payload Licensing – Kiernan	149
C14 - Bridging the Gap: Collaboration Between Industry, Academia, & Government for Spaceport Operations – Kiernan, Meyer, Sanchez, Crocket, Mierau	155

Table of Figures

FIGURE 1 - OPENING WELCOME FROM CAL POLY PRESIDENT JEFFREY D. ARMSTRONG	7
FIGURE 2 – RANGE OF THE 'IGNOROSPHERE'	7
FIGURE 3 - DAWN AEROSPACE Mk-II AND Mk-III SIZE COMPARISON (SEE APPENDIX C3).....	9
FIGURE 4 - STELLAR EXPLORATIONS NANO SATELLITE PROPULSION TEST (SOURCE HTTPS://WWW.STELLAR-EXPLORATION.COM/)	10
FIGURE 5 - PASO ROBLES SPACEPORT AND TECHNOLOGY CORRIDOR (SEE APPENDIX C5)	11
FIGURE 6 – BLUE ORIGIN NEW SHEPARD LIFTS OFF FROM LAUNCH SITE ONE DURING NS-31 (APRIL 14, 2025) (SOURCE - HTTPS://WWW.BLUEORIGIN.COM/NEWS/GALLERY)	12
FIGURE 7 - Dr. DIANNE DETURRIS SPEAKING TO ATTENDEES	13
FIGURE 8 – LONG-TERM MESOSPHERIC RESEARCH GOAL: SUBORBITAL MISSION INTO THE MESOSPHERE TO LEVERAGE DEVELOPED LoRa PAYLOADS FOR TARGETED RESEARCH (SEE APPENDIX C8; SOURCE - HTTPS://SCIED.UCAR.EDU/IMAGE/ATMOSPHERE-LAYERS-DIAGRAM).	14
FIGURE 9 - GROUND UP AND MIDDLE OUT STRATEGY FOR IN SITU OBSERVATIONS AS OUTLINED BY OKLAHOMA AEROSPACE INSTITUTE FOR RESEARCH AND EDUCATION (SEE APPENDIX C10).....	16
FIGURE 10 - CAL POLY STUDENTS DEVELOPING AND TESTING A NEW CUBESAT (SOURCE - HTTPS://WWW.POLYSAT.ORG/).	17
FIGURE 11 - CHEREE KIERNAN, ROBERT MEYER, DAVID SANCHEZ, BOB CROCKETT, AND MIKE MIERAU, DISCUSS BRIDGING THE GAP BETWEEN INDUSTRY, ACADEMIA, AND GOVERNMENT FOR SPACEPORT OPERATIONS.	18

Introduction

This project aimed to explore the potential of commercial reusable suborbital vehicles to enable unprecedented access to the mesosphere lower thermosphere (MLT) region of the Earth's atmosphere for in-situ measurements and observations.

The increase in low-cost access to near space presented by these vehicles enables game-changing opportunities with respect to research and education. A suborbital research vehicle will not only grant scientists much more frequent access to in situ investigations in near-Earth space but also allow students at all levels to gain hands-on access to space science and engineering.

One can envision a model where students can conduct complete end-to-end projects to design, build, fly, and analyze data from individual research projects for thousands of dollars instead of hundreds of thousands. Such a paradigm will also strengthen ties between university researchers, funding agencies and commercial spacecraft companies.

The MLT is a critically important but poorly understood region that plays a crucial role in space weather, climate, atmospheric change, and Earth systems modeling. Commercial reusable suborbital vehicles and a centralized facility to access them could significantly augment current balloons and sounding rocket study of the MLT.

The primary objectives of this effort were to bring together scientists, engineers, educators, and commercial operators to discuss missions and instruments that can take advantage of frequent, low-cost suborbital vehicle flights to the MLT—supporting new research programs, data collection, technology development, and educational opportunities at universities and research institutions across the United States.

Conference Team

Dr. Dianne DeTurris

Dr. DeTurris is a professor in the Aerospace Engineering Department. Dr. DeTurris has degrees in Aerospace Engineering from Georgia Tech, Penn State, and Virginia Tech, with PhD research in experimental hypersonic airbreathing propulsion. Before joining Cal Poly in 1998, Dr. DeTurris was a research faculty member at the College of William & Mary. She also held the position of a Post-Doctoral Fellow for the National Research Council at NASA Langley Research Center and worked on fighter performance analysis for General Dynamics Fort Worth Division. Since coming to Cal Poly, Dr. DeTurris has been interim Co-Chair of the Aerospace Engineering Department, Director of Global Technical Education Initiatives, and an advocate for DEI in the College of Engineering. Her teaching includes jet and rocket propulsion, aerothermodynamics, hypersonics, systems thinking, and launch vehicle design. Dr. DeTurris is a faculty advisor for two student rocket development clubs. Her current research is in managing complexity in large engineered systems.

Dustin DeBrum

Dustin DeBrum is the Director Operations for Digital Transformation Hub (DxHub), California Cybersecurity Institute, and 5G Innovation Lab at Cal Poly, where he supports cyber education initiatives and outreach to build a skilled cyber workforce capable of navigating today's complex threat landscape. His higher-education career spans over 24 years at Cal Poly, supporting university commercial operations and enterprise technology services. Before Cal Poly, DeBrum worked for multiple dot-com companies in Silicon Valley. In addition to his experience, DeBrum has presented and hosted workshops, conferences, and online webinars on space cybersecurity, technology disability policy, credit card security, and cloud deployment. DeBrum holds a bachelor's degree in Twentieth-Century Science & Technology History from San Jose State University and a Master's in Educational Leadership and Administration from Cal Poly.

Dr. Kurt Colvin

Dr. Kurt Colvin is a retired professor of industrial engineering from Cal Poly, San Luis Obispo. His professional interests encompass a range of technical fields, including systems engineering, data analytics, data acquisition, cloud computing, and aircraft flight test engineering. Dr. Colvin possesses over 25 years of industrial and research experience. His career has included work at organizations such as NASA (Ames and JPL), the Air Force Test Pilot School, The Boeing Company, Systems Integrators, Inc., Ameridata, Festo, and Frito-Lay, Inc. Throughout his career in education, he has taught a diverse array of subjects. These include systems engineering, mechanical design, manufacturing processes, industrial automation, systems simulation, manufacturing systems integration, flight test engineering,

and data analytics. Beyond his professional endeavors, Dr. Colvin is a parent and spouse and demonstrates a commitment to lifelong learning. His personal interests are varied and active; he is a pilot, bicyclist, sailor, and an enthusiastic builder of projects undertaken purely for enjoyment.

Anmol Sharma

Anmol Sharma is a fourth-year Aerospace Engineering student at Cal Poly and has been involved in the aerospace industry through internships and projects during her university career. Sharma served as a Spacecraft Integration Engineering Intern for SpaceX, Mechanical Design Intern for Payload Integration for NASA, and Systems Engineer Intern for the Paso Robles Airport. Sharma will receive her BS in Aerospace Engineering in June 2025.

Conference Summary

The Conference on Atmospheric Research Using Suborbital Vehicles was hosted at the Allegretto Vineyard Resort, February 27-28, 2025. Planning for the event began in 2024, focusing on bringing together education, government, and commercial partners to discuss how commercial suborbital vehicles are being used to support research, now and into the future. Figure 1 shows the conference opening by Cal Poly President Jeffrey Armstrong.

Figure 1 - Opening welcome from Cal Poly President Jeffrey D. Armstrong

Seventeen sessions were spread over 1.5 days and provided participants with time for interaction and sharing. Sessions included the state of MLT and atmospheric research, existing methodologies for suborbital research (e.g., balloon, drone, sounding rockets, etc.), new horizontal lift systems, early student engagement in space research, and community support for educational access to space and spaceport development.

The Science of the Mesosphere-Lower Thermosphere (MLT)

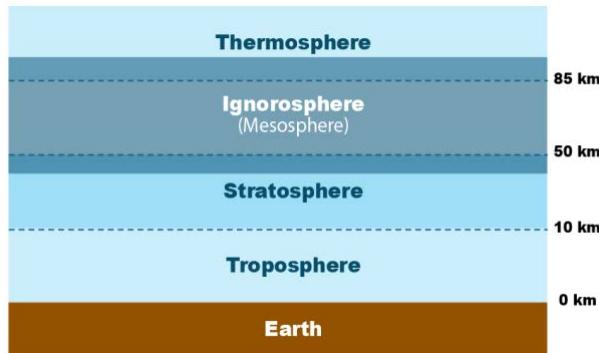


Figure 2 – Range of the 'Ignorosphere'

Dr. Todd Smith from JHU-APL set the stage for the conference by providing an overview of the mesosphere-lower thermosphere-ionosphere (MLT-I) region (see Appendix C1), which poses unique research challenges due to its inaccessibility. Too low for satellites and too high for balloons, with sounding rockets providing only expensive, brief data collection opportunities.

The MLT, shown in Figure 2, comprises several layers: the mesosphere (50-85km), where meteors burn up and temperatures reach -90°C; the thermosphere above it with dramatically increasing temperatures (200-2000°C) that marks the boundary to space at 62 miles and features solar UV/X-ray breakdown and aurora formation; and the ionosphere (extending to 1000km) with its three layers (D, E, F) of charged particles that vary with sunspot cycles and can disrupt power grids.

Dr. Smith highlighted the "Catch-22" that experiments need space-testing before deployment and advocated for frequent, low-cost flights offering reusable platforms and microgravity research opportunities. These would enable crucial studies in multiple areas including the global radiation budget (affected by clouds, aerosols, and greenhouse gases), atmospheric composition, ionosphere plasma, auroras, electron content mapping for improved GPS accuracy, negative ions found on Titan, noctilucent clouds, upper atmosphere lightning, and meteors.

Space to Grow

According to Stan Shull (see Appendix C2), global satellite infrastructure now exceeds 11,000 craft, with 90% in Low Earth Orbit (LEO, 200-2000 km). This distribution is particularly significant for Mesosphere-Lower Thermosphere (MLT) research, as the lower boundary of LEO satellites operates in the upper reaches of the MLT region that Dr. Smith described as critically important yet challenging to study.

The \$300 billion global space economy, with \$75 billion from the US alone, is driving technological innovations like CubeSats, reusable rockets, and high-volume satellite production that could revolutionize MLT research. The shift from "exquisite" production models (5-10 years of government-led development) to "standard" models (under 2 years of commercial development) aligns perfectly with Smith's call for frequent, low-cost flights to overcome the "Catch-22" of space testing. These technological and economic developments create new possibilities for deploying specialized instruments to study the MLT region and the vehicles needed to support a rapid flight cadence.

Shull's recommendation that an educationally focused spaceport specializing in suborbital testing represents a direct opportunity to advance MLT research. Such testing platforms could enable studies of the global radiation budget, atmospheric composition variability, ionosphere plasma, and other phenomena identified as crucial research areas. The expanding capabilities in communications and data services could also enhance real-time monitoring of the ionosphere's D, E, and F layers, improving our understanding of how sunspot cycles affect their structures and densities. This convergence of atmospheric science and satellite technology offers promising pathways to expand our limited knowledge of this critical atmospheric region that influences everything from global warming to space weather and communications.

The Next Generation of Suborbital Vehicles

Building on the discussions of MLT science and satellite technology, Khaki Rodway presented Dawn Aerospace's development of next-generation suborbital vehicles (see Appendix C3), which offer promising new platforms for researching the difficult-to-access

atmospheric region. These rocket-powered aircraft, shown in Figure 3, are designed specifically for frequent suborbital research missions, reaching the Karman line at 100km (62 miles). Dawn's approach directly addresses the need for frequent, affordable access to the MLT region that Smith emphasized is "too low for satellites and too high for balloons."

Suborbital flight history has evolved from the 1961 Mercury Redstone launch and the 1963 X-15 flights above the Karman line to commercial milestones like SpaceShip One in 2004 and Blue Origin's New Shepard in 2015. Dawn Aerospace is positioning itself as a more cost-effective alternative at approximately \$100,000 per flight, significantly less than traditional sounding rockets. It offers advantages in turnaround time, risk reduction, and targeted testing capabilities. Their current Mk-II Aurora vehicle can reach hypersonic speeds past Mach 3.5 with a goal of just 90 minutes between flights, potentially revolutionizing the frequency of MLT data collection compared to the "rare, expensive, and not reliable" sounding rockets that Smith described.

Dawn's suborbital vehicles provide an ideal platform for rapid prototyping and testing of both

Figure 3 - Dawn Aerospace Mk-II and Mk-III size comparison (see Appendix C3)

science packages and satellite systems. The remarkably quick 90-minute turnaround between flights directly addresses Smith's "Catch-22" dilemma, where experiments need space-testing before deployment. This rapid cadence allows researchers to iterate quickly on instrument designs, test components in actual space conditions, identify problems, implement fixes, and retest—all potentially within the same day. For satellite developers, this capability dramatically accelerates the testing cycle for critical subsystems like sensors, communications equipment, and environmental monitoring tools before committing to full orbital deployment.

With 40-minute flight durations providing exposure to the extreme conditions of the upper atmosphere and space boundary, Dawn's vehicles enable realistic testing at a fraction of the cost and time required for traditional space validation, potentially transforming how the industry approaches both scientific instrument development and satellite systems engineering for the expanding commercial space sector that Shull described.

Rocket Engine Testing

Continuing the discussion on rapid prototyping, Ryan Meisberger presented Stellar Exploration's rocket testing operations at their Paso Robles Hypergolic Test Site at the future Paso Robles Spaceport (see Appendix C4). This facility specializes in building, testing, and loading chemical propulsion systems, including work on NASA's Capstone mission. Their capabilities directly complement the satellite technology ecosystem described earlier and provide the critical testing infrastructure that supports both "exquisite" and "standard" satellite production models.

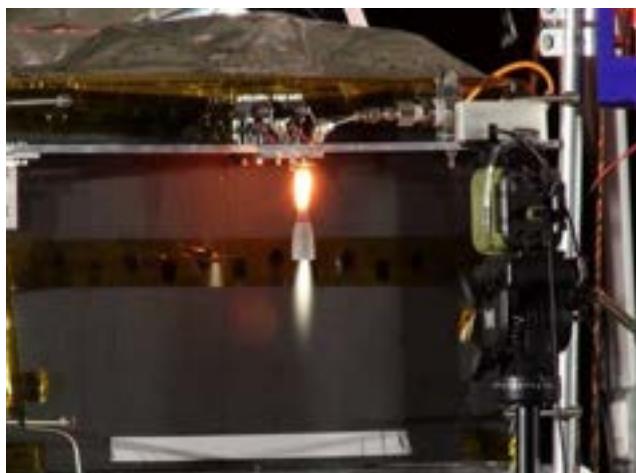


Figure 4 - Stellar Explorations Nano Satellite propulsion test
(source <https://www.stellar-exploration.com/>)

The company maintains 14 certified SCAPE (Self-Contained Atmospheric Protective Ensemble) handlers who safely work with dangerous hypergolic propellants—specifically hydrazine and dinitrogen tetroxide—commonly used in rocket systems. This infrastructure enables comprehensive testing of small satellite propulsion systems essential for positioning and maneuvering satellites in various orbits, including VLEO.

The facility tests (see Figure 4) monopropellant thrusters producing 0.25N to 0.5N of thrust (up to 24 thrusters per test) and 5N bipropellant thrusters (up to 8 per test).

Their services include qualification unit hot-fire tests, water hammer testing, catalyst testing, and hypergolic load tests—all critical validation steps for ensuring reliable operation in space. With 30 engineers and an annual development cycle for new thrusters, Stellar Exploration demonstrates the specialized aerospace testing capacity that Shull identified as a potential focus area for a research-aligned Spaceport, while leveraging Dawn Aerospace's capabilities of providing the propulsion system verification that satellites need before deployment.

Paso Robles Spaceport

Building on the foundation of MLT science needs, Dawn Aerospace's suborbital capabilities, and Stellar Exploration's rocket testing operations, a panel featuring Bill Britton, Dr. Kurt Colvin, and Paul Sloan presented a vision for the Paso Robles Spaceport focused on educational access to space (see Appendix C5). Britton, the Executive Director for Cal Poly Solano Campus and Maritime Academy Initiatives and a City of Paso Robles Airport Commissioner, identified a common problem within the space industry: the lengthy wait times and high costs associated with securing launch opportunities. The proposed spaceport, shown in Figure 5, would address this by providing *assured educational access to space* for testing, fostering education, connecting university programs with workforce needs, and promoting scientific curiosity among students and the public.

Dr. Kurt Colvin introduced the Spaceport Training and Research Center (STRC), which would provide hands-on experience and bridge commercial space opportunities with education, research, and development. The facility would provide state-of-the-art capabilities and offer

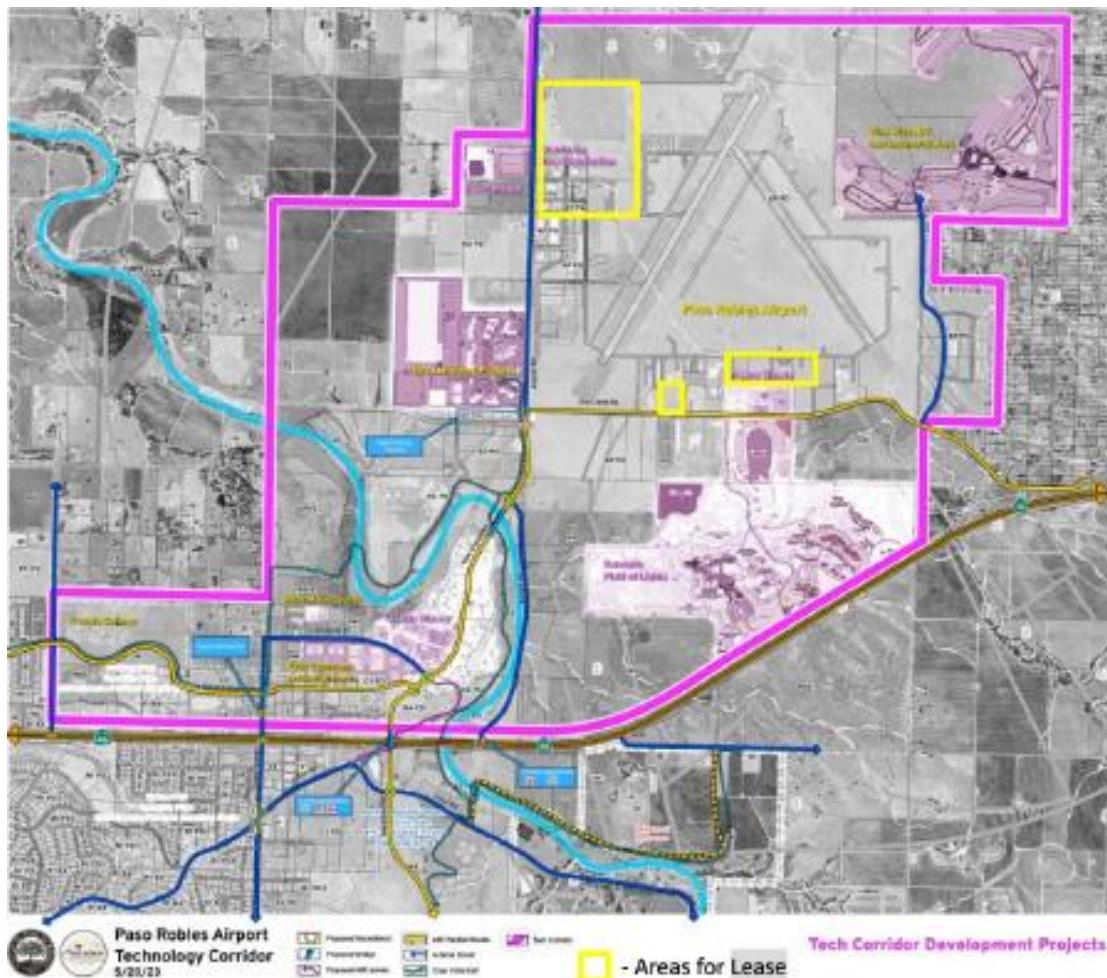


Figure 5 - Paso Robles Spaceport and Technology Corridor (see Appendix C5)

training at both university and professional levels. Unlike other spaceports, this initiative would specifically focus on education and research, creating opportunities for middle school, high school, and college students to build, design, and launch projects while still in school.

City of Paso Robles Economic Development Manager Paul Sloan addressed economic development aspects of the spaceport initiative, noting that while agriculture, tourism, and business currently drive the economy in San Luis Obispo and Santa Barbara counties, a spaceport would bring significant additional economic benefits. The city of Paso Robles has developed a strategic plan incorporating space tech, with the spaceport envisioned as part of a broader *Space Innovation and Technology Park*. The proposed site would leverage the Paso Robles airport, a former military facility with existing infrastructure advantages. Sloan, Britton, and Colvin emphasized that the educational focus positions the project uniquely among spaceports, addressing gap issues mentioned by the previous speakers that would have a positive impact on space research.

MLT Research Case Study

Following his previous presentation, Dr. Todd Smith provided a research case study from Johns Hopkins University's Applied Physics Laboratory (JHU-APL) commercial suborbital program (see Appendix C6), showcasing how private companies are transforming suborbital spacecraft development. Figure 6 shows one example of how commercial space has changed dramatically in the last 20 years.

Their JANUS platform, a self-contained portable system that standardizes power, data storage, and instrument control, has completed nine flight tests demonstrating the crucial ability to conduct repeated experiments. The program has partnered with the Commercial Spaceflight Federation, Blue Origin, and Virgin Galactic over ten years, securing NASA Flight Opportunities funding for five low-cost missions while involving numerous students working with small payloads. This case study directly supports the Paso Robles Spaceport vision by providing a proven model for educational space access.

Beginning with Blue Origin launches (see Figure 6) before moving to Virgin Galactic for vibration and electromagnetic environment studies; the JANUS program has evolved through both successes and failures. Their experience emphasizes how rapid launch access benefits

Figure 6 – Blue Origin New Shepard lifts off from launch site one during NS-31 (April 14, 2025)
(source - <https://www.blueorigin.com/news/gallery>)

agile prototyping and how standardized platforms for development could be leveraged at the proposed Spaceport Training and Research Center, particularly by using Dawn Aerospace's quick-turnaround vehicles.

The JHU-APL program validates the need for an educationally focused spaceport, showing how NASA partnerships can support ongoing research, how meaningful student involvement enhances outcomes, and how proper infrastructure enables economically viable space research. This working model confirms that the spaceport's approach to bridging commercial space opportunities with education and research can address the gaps in MLT region understanding while providing valuable hands-on experience for students at all levels.

Engaging Students in Space Technology Research

Cal Poly Aerospace Engineering professor and the conference PI, Dr. Dianne DeTurris (see Figure 7), presented her work engaging students in space technology research focused on a propulsion curriculum (see Appendix C7). Under her guidance, Cal Poly has developed

comprehensive rocket technology projects for undergraduate, graduate, and club participants. These initiatives provide hands-on experience in rocket development while maintaining rigorous safety standards throughout all activities.

Figure 7 - Dr. Dianne DeTurris speaking to attendees

Cal Poly's rocket development uses an agile approach and has followed a progressive evolution in complexity and capability. The initial focus has been building solid motor rockets for competitions, obtaining Tripoli Rocketry Association certifications,

and working with solid rocket motors up to class M. DeTurris' students later advanced to hybrid testing using nitrous oxide and HTPB (rubber), which offered advantages in performance and technology. Most recently, they've developed sophisticated liquid rocket engines using ethanol and nitrous oxide, achieving remarkable success in competitions, including the extremely challenging feat of throttling a thruster from 100% to 35% and back up again - something only one other student team worldwide has managed to achieve.

DeTurris' work directly connects to the previous sessions by demonstrating practical educational applications that could benefit from access to an educational Spaceport and Dawn Aerospace's rapid-turnaround suborbital vehicles. The Collegiate Propulsive Lander

Challenge¹, she highlighted, with plans for a hovering and landing vehicle, represents the kind of iterative testing that Smith advocated for in his MLT research case study.

Space IOT Research Case Study

Cal Poly Electrical Engineering department professors Dr. Dennis Derickson and Steve Dunton, along with Cal Poly Space Systems lead Jack Ryan, presented a compelling case study on suborbital Internet of Things (IoT) research that continued to build on the themes of previous sessions (see Appendix C8). Their work focuses on LoRa (Long Range) wireless communication technology, which, despite its low bandwidth, offers significant advantages for space research applications due to its long-range capabilities and low cost (see Figure 8).

According to Derickson, LoRa uses a distinctive chirped waveform modulation technique that shifts from low to high frequency, enabling low-bandwidth communication between ground stations and low-orbit to suborbital payloads.

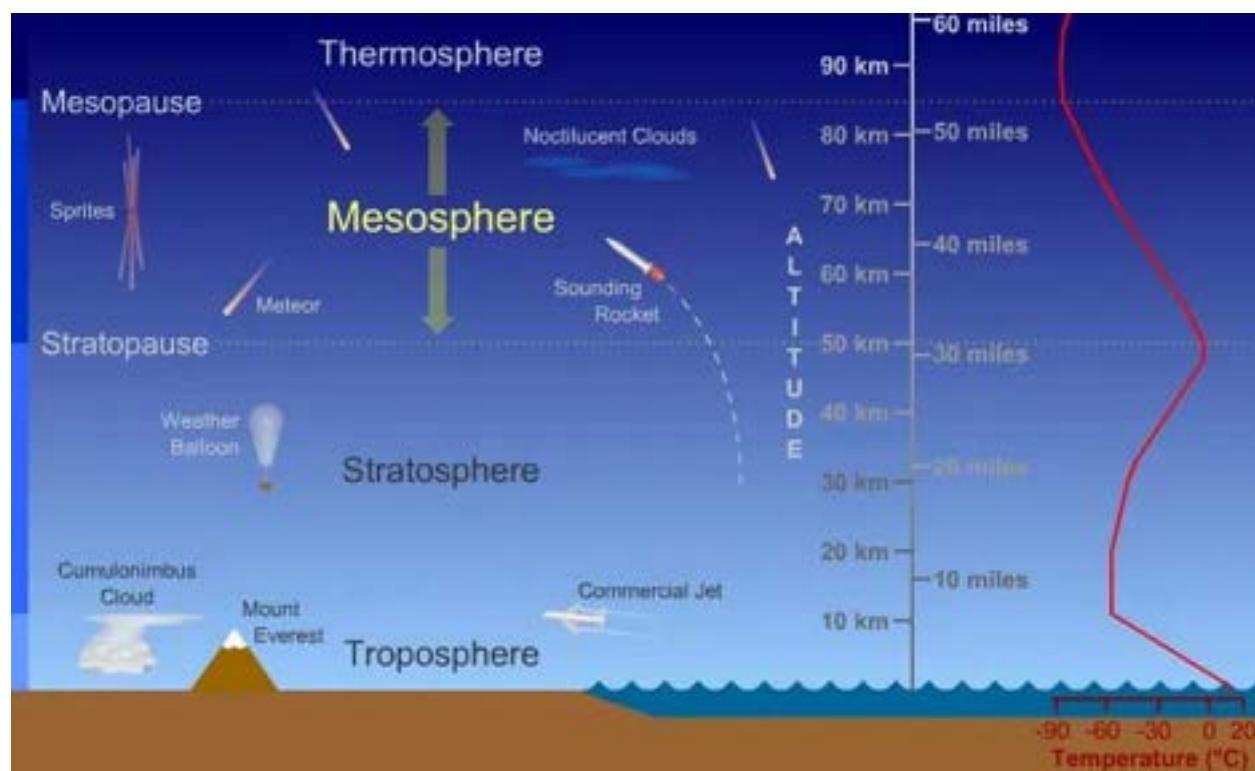


Figure 8 – Long-term Mesospheric Research Goal: Suborbital mission into the Mesosphere to leverage developed LoRa payloads for targeted research (see Appendix C8; source - <https://scied.ucar.edu/image/atmosphere-layers-diagram>).

¹ <https://landerchallenge.space/>

The team collaborates with OWL Integration², which develops low-cost, Size, Weight, and Power (SWAP) radios. Professor Dunton described how these systems can function effectively with low-gain antennas on the ground and in space, making them particularly suitable for MLT research applications. The project incorporates a "Clusterduck Mesh Network"³ with custom electronics and payloads featuring various components that work together in a mesh configuration. This technology has multiple possible use cases, both terrestrial and orbital. It could directly impact MLT research, offering a potential low-cost solution for data collection in these difficult-to-access atmospheric regions.

Local Community STEM

The first day of the conference concluded with a panel moderated by local science teacher Evan Johnston from Paso Robles High School, featuring three students with aerospace aspirations (see Appendix C9). The panel discussed their interest in space research and engineering projects, including collaborations to build a five-foot suborbital testing rocket that reaches 5,000 feet. Their stories underscored both the enthusiasm among local students and the need for more accessible aerospace education opportunities, which is precisely what the proposed Paso Robles Spaceport aims to provide. This session demonstrated the importance of STEM education, highlighting why bridging academic research and commercial space applications is crucial for developing the next generation of aerospace professionals who will contribute to future MLT research and suborbital vehicle development.

From the Ground Up to Middle Out

Kicking off day two, Dr. Jamey Jacob from Oklahoma State University's Oklahoma Aerospace Institute for Research and Education (OAIRE)⁴ presented "From the Ground Up to Middle Out: Drones and Balloons for Assistive Suborbital Observations." His work addresses the in-situ data gap in the Planetary Boundary Layer (PBL) through a comprehensive approach using multiple vehicle types (see Figure 9). This has evolved from performing Mars aircraft testing at high altitudes to the NSF-funded Cloud-Map project, which helped develop regulatory approval processes and expand partner relationships. More recently, Jacob's team has focused on advanced air mobility funded by NASA, supporting emerging technologies and air traffic control by gathering wind data across various boundary layers in urban and rural environments (see Appendix C10).

Dr. Jacob described OAIRE's innovative use of multiple platforms to conduct atmospheric research. Their solar balloons, which can reach 60,000-90,000 feet, provide an inexpensive platform for student projects and team-building exercises. Having launched approximately 200 balloons with a nearly 100% payload recovery rate, they've expanded to *Meteogliders*

² <https://www.owlintegrations.com/>

³ <https://clusterduckprotocol.org/>

⁴ <https://go.okstate.edu/aerospace/>

Ground Up and Middle Out Strategy In Situ Observations

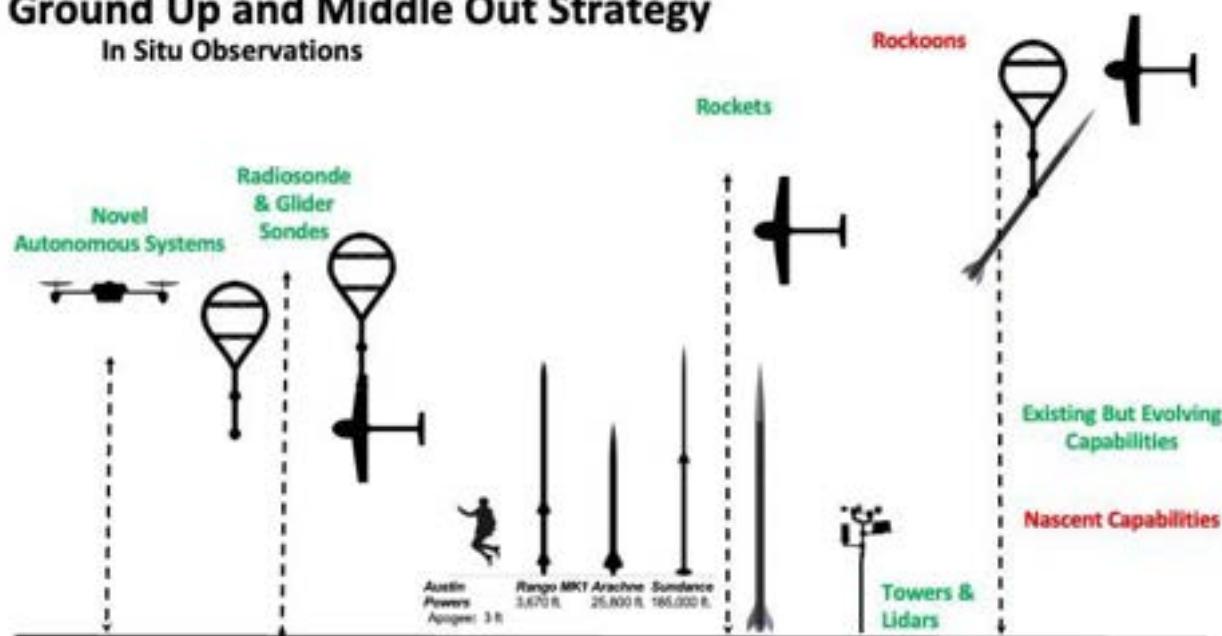


Figure 9 - Ground Up and Middle Out Strategy for In Situ observations as outlined by Oklahoma Aerospace Institute for Research and Education (see Appendix C10).

that offer controlled descent paths, unlike conventional balloons. Their most impressive development is a deployable glider payload launched from a small 4-inch diameter rocket with an N-sized motor, capable of reaching 40,000 feet before deployment. The team is also working on plans for a *Rockoon* (rocket launched from a balloon) that could be conducted at Oklahoma Air and Spaceport, located in Burns Flat, which has extensive testing capabilities.

The presentation demonstrated another approach to accessing the difficult-to-study atmospheric regions discussed the previous day by Dr. Todd Smith, and like Cal Poly's rocket programs and the LoRa communications research, OAIRE's multi-platform approach offers complementary data collection methods that could benefit from the educational spaceport model proposed for Paso Robles. Jacob's strategy represents another model for bridging the gap between academia and industry while developing practical solutions for atmospheric research—precisely the kind of collaborative work that could thrive at an education-focused spaceport facility.

PolySat Program

Jess Bleakley, a Cal Poly third-year aerospace engineering student and PolySat⁵ lab manager, presented an overview of the university's student-run small satellite research and development laboratory that established the CubeSat standard in collaboration with

⁵ <https://www.polysat.org/>

Stanford University (see Appendix C11). Founded in 1999, the program initially focused on student projects but has evolved into a significant contributor to small satellite development. The program is currently working on three missions (SAL-E, AMDROHP, and GENESys) scheduled for upcoming launch.

Bleakley emphasized how access to a suborbital launch facility would provide affordable opportunities with fast turnaround times, enabling more iterative testing processes ideal for agile prototyping. Aligning with the earlier calls for frequent, low-cost flights to advance MLT research and the use of multi-platform strategies.

Overall, the PolySat program gives students hands-on experience with real space hardware (see Figure 10), a key part of research and learning success addressed in previous sessions, creating a robust educational ecosystem that bridges academic research with commercial space applications while providing valuable learning opportunities for students at all levels.

Figure 10 - Cal Poly students developing and testing a new CubeSat (source - <https://www.polysat.org/>).

Cal Poly AMSAT Project

As a follow-up to the PolySat program, space cybersecurity educator Henry Danielson and Cal Poly computer science student Isaac Rudnick provided a short overview of a project leveraging the Association of Amateur Radio Satellite Organizations (AMSAT)⁶ development standard, which uses a \$400, 3D-printed 1U CubeSat simulator to teach systems integration and satellite communications.

Though not space worthy, this plastic model incorporates all the components of a real orbital or suborbital payload, allowing students to learn ground control communications and practice using telemetry to determine rotation rates. This cost-effective educational tool, with its open-source instructions and month-long build timeline, provides valuable hands-on experience in radio telecommunications and CubeSat design fundamentals, demonstrating how accessible technologies can bridge theoretical knowledge and practical space applications.

Paso Robles Air and Spaceport Licensing Update

Given the discussion a potential educationally focused spaceport could have for research and development, Mark Scandalis, the Paso Robles Airport Manager, presented an update

⁶ <https://www.amsat.org/>

on the city's licensing process (see Appendix C12). Following a preliminary technical review in 2022, which confirmed the project's feasibility, the city partnered with Cal Poly to develop the license application. The site includes 296 acres available for development and already incorporates two static engine testing sites in its explosive site plan.

Significant progress has been made with the spaceport operations procedures, records management plan, and initial documentation already submitted to the FAA. The city council also secured an FAA grant to update the airport master plan to include the spaceport concept. The remaining steps include completing the launch site location review, hazard analysis, environmental assessment, and finalizing agreements with local agencies. According to Scandalis, the project aims to connect the educational and research initiatives discussed throughout the conference to the concrete infrastructure and regulatory framework necessary to make the vision of an educationally focused spaceport a reality.

In support of Scandalis' update presentation, Cheree Kiernan, President and CEO of Integrated Launch Solutions (ILS), outlined the licensing process to assist other participants working on similar programs. She explained the difference between FAA Part 420 (spaceport licensing) and the more stringent Part 450 (launch vehicle operator licensing).

Bridging the Gap

The final conference session (see Appendices C13 and 14) featured a panel discussion on "Bridging the Gap" between industry, academia, and government for spaceport operations, with participants Cheree Kiernan, Robert Meyer, David Sanchez, Bob Crockett, and Mike Mierau (see Figure 11). The purpose of this conversation was to explore key challenges facing

Figure 11 - Cheree Kiernan, Robert Meyer, David Sanchez, Bob Crockett, and Mike Mierau, discuss bridging the gap between industry, academia, and government for spaceport operations.

space research and innovation facilities, including keeping talented workers in the local community, securing adequate funding, developing a supportive ecosystem, and ensuring sufficient facility utilization.

Robert Meyer from the Employment Training Panel (ETP) in the governor's office discussed workforce development funding, noting they've already provided \$400,000 to support Cuesta Community College and have \$100 million available for training programs. David Sanchez shared his experience growing a small aerospace business from 2 to 15 employees, emphasizing the importance of clear value propositions and affordable facilities for startups. Bob Crockett highlighted that while the spaceport wouldn't change Cal Poly's curriculum, it would dramatically expand opportunities for the university's 80 engineering clubs and research initiatives through government and industry contracts. Mike Mierau from Premier Valley Bank discussed financing options for startups and suggested that educational institutions could be the first tenants to attract industry partners.

The panel concluded with actionable recommendations: create accessible entry points for small companies with limited resources; implement "baby steps" with safe pilot programs to achieve early, inexpensive wins; broaden pathways for students to develop skills needed in the aerospace economy; advocate for support during California Aerospace Day in Sacramento; and consider innovative approaches to facility design that could generate more revenue while accommodating FAA limitations. This final session effectively tied together the conference's themes of educational opportunity, economic development, and collaborative partnerships while providing practical next steps toward realizing the Paso Robles Spaceport vision.

Conclusions and Next Steps

Accomplishments

- The conference successfully convened a diverse group of stakeholders, including scientists, engineers, educators, and commercial space operators.
- It fostered discussions on leveraging commercial suborbital vehicles for unprecedented access to the Mesosphere-Lower Thermosphere (MLT) region.
- The event explored the potential of low-cost suborbital flights to support new research programs, data collection, technology development, and educational opportunities.
- It showcased advancements in suborbital vehicle technology, highlighting reusable platforms and rapid prototyping capabilities.
- The conference saw over 100 registrations from across academia, government, and the private sector for the 1.5-day event, with 67 participants on Thursday and 47 participants on Friday.
- Over 25 students registered from college to high school for the event to listen and to present projects.
- The event saw five universities register, including San Jose State University, San Diego State University, Cal Poly Pomona, and presentations from Cal Poly San Luis Obispo, Johns Hopkins University, and Oklahoma State University.
- State and Federal representatives attended to convey support, understand need and impact, and highlight student excellence.
- 15 commercial companies, including launch providers (Dawn, SpaceLaunch, SpaceX, Blue Origin) registered for the event.
- Case studies demonstrated the feasibility of conducting repeated experiments and the benefits of standardized platforms for development.
- The conference addressed the importance of creating accessible pathways for students and researchers, emphasizing hands-on experience and collaboration between academia, industry, and government.
- It advanced the Paso Robles Spaceport vision, focusing on its potential to provide assured educational access to space, foster STEM education, and drive economic development in the region.
- The conference facilitated crucial conversations on licensing processes, infrastructure development, and strategies for bridging the gap between industry, academia, and government to support spaceport operations and the growth of the aerospace sector.
- The conference included a "Working Backwards" exercise that generated actionable themes such as the establishment of a multi-university educational consortium, stakeholder communication strategies, integrated educational pathways, and phased infrastructure development plans.

What was the impact

The culminating activity of the conference consisted of a structured *Working Backwards* exercise in which conference attendees were divided into five discussion groups to synthesize insights and formulate strategic action items.

Working Backwards is a project planning methodology used extensively by Cal Poly's Digital Transformation Hub (DxHub) powered by AWS⁷, to understand customer goals and validate the viability of a product or strategy. For this event, participants were put into groups and provided with four questions:

1. Describe a challenge or opportunity in atmospheric research or space science.
2. How could commercial, academic, and government partners collaborate to address the challenge or opportunity?
3. Describe how you might be able to better address the challenge or opportunity if a solution were implemented.
4. Describe what the end result looks like.

The conversations produced several interconnected themes, such as the establishment of a multi-university educational consortium with shared access to suborbital vehicle opportunities, the development of comprehensive stakeholder communication strategies, the creation of integrated educational pathways spanning from middle school through university research programs, and the implementation of phased infrastructure development plans to support innovation. Furthermore, participants emphasized the critical importance of strategic alliance-building in securing regulatory approvals and community support to ensure long-term impact on research and education.

Another important factor identified was the time requirements for successfully implementing the outlined goals, with the agreement that a crawl, walk, run framework encompassing immediate, intermediate, and long-term objectives be leveraged.

The groups also recognized that the convergence of educational institutions, governmental agencies, and commercial entities is essential for establishing the operational capabilities necessary to address the research gaps and needs discussed during the conference and to support a more effective agile development methodology.

Intellectual Merit of the Event

The conference demonstrated significant intellectual merit by:

- Addressing Critical Research Gaps: It focused on the mesosphere-lower thermosphere (MLT), a scientifically vital but poorly understood atmospheric region,

⁷ <https://dxhub.calpoly.edu/>

highlighting challenges like its inaccessibility and the limitations of current research methods.

- **Convening Diverse Expertise:** The event successfully brought together scientists, engineers, educators, students, and commercial space operators from academia, government, and the private sector to share knowledge and foster interdisciplinary dialogue.
- **Showcasing Technological Innovation:** Presentations featured advancements in commercial reusable suborbital vehicles, rocket testing, satellite technology (like CubeSats and LoRa communication), and alternative atmospheric observation platforms (drones, balloons, gliders), emphasizing capabilities like rapid prototyping, frequent low-cost access, and iterative testing.
- **Promoting Collaborative Solutions:** The conference facilitated crucial discussions on bridging the gap between industry, academia, and government, exploring collaborative models for research, infrastructure development (like the Paso Robles Spaceport), workforce training, and funding.
- **Integrating Education and Research:** A strong emphasis was placed on the educational potential of suborbital research, showcasing models for engaging students at all levels (K-12 through university) in hands-on projects, fostering STEM pathways, and developing the future workforce.
- **Generating Actionable Outcomes:** The event included structured exercises that led to concrete themes and next steps, such as the potential formation of a multi-university educational consortium and phased development plans, indicating a commitment to translating discussion into tangible progress.

Overall, the conference significantly contributed to advancing the understanding of MLT science and the application of commercial suborbital vehicles, fostering innovation and collaboration across multiple sectors.

Conclusions

The Conference on Atmospheric Research Using Suborbital Vehicles successfully convened stakeholders from diverse sectors to address the challenges and opportunities in Mesosphere-Lower Thermosphere (MLT) research. The event fostered discussions on leveraging commercial suborbital vehicles for scientific exploration, technological development, and educational advancement. Participants explored the potential of low-cost suborbital flights to support research programs, data collection, and hands-on educational opportunities, while also addressing the advancements in suborbital vehicle technology and the feasibility of repeated experiments using standardized platforms.

A key focus of the conference was on the development of the Paso Robles Spaceport vision, emphasizing its potential to provide assured educational access to space, promote STEM education, and stimulate regional economic development. Strategic discussions addressed licensing processes, infrastructure development, and the importance of collaboration

between industry, academia, and government to support spaceport operations and the growth of the aerospace sector.

The conference culminated in a "Working Backwards" exercise that generated actionable themes such as the establishment of a multi-university educational consortium, stakeholder communication strategies, integrated educational pathways, and phased infrastructure development plans. Participants recognized the need for strategic alliances, regulatory approvals, community support, and a phased implementation approach to achieve long-term impact on research and education. The conference underscored the importance of collaboration between educational institutions, government agencies, and commercial entities to establish operational capabilities, address research gaps, and support agile development methodologies in the field.

When participants were asked about what new idea resonated with them, the top two phrases were collaboration and rapid prototyping, highlighted in Figure 7, both of which align with key points raised during the Working Backwards exercise. The proposed consortium model would leverage collective resources to provide unprecedented access to suborbital research opportunities, with the added benefit of addressing workforce development needs through integrated educational pipelines. At the same time, assured educational access to facilities and suborbital platforms could change the paradigm for research and development. These approaches align with the conference's overarching theme of democratizing access to space research through commercial suborbital vehicles, particularly for educational institutions and early-career scientists.

Next Steps

Continued Discussion—Communication and collaboration were key themes of the event, with many participants eager to share ideas and collaborate on innovative ways to support MLT research and systems development. As such, the conference provided a great opportunity for networking and discussion.

We recommend a cadence of follow-up in-person or online events for academic, commercial, and governmental participants to allow research teams to share projects and hardware needs or innovations, commercial partners to share new platforms and capabilities, and government agencies to provide updates on funding opportunities or infrastructure development plans.

Educational Consortium Development—The establishment of a multi-university educational consortium with shared access to suborbital vehicle opportunities was an innovative idea generated from the event, and multiple attendees expressed their interest in participating. Furthermore, Dawn Aerospace has indicated its interest in partnering in such a consortium and the potential for a 'wet lease' model to provide regional launch capabilities.

We recommend creating a working group including the conference participants (academic and commercial) to develop integrated educational pathways from middle school through university research programs to foster interest and expertise in the field.

Assured Educational Access to Space—Access to facilities and suborbital platforms from a dedicated educational facility near an applied research university could change the game for suborbital testing, research, and development. It can also be the catalyst for early education and operational training programs. Establishing the Paso Robles Spaceport Training and Research Center (STRC) addresses these needs.

We recommend implementing a phased infrastructure development plan to support innovation and growth in a sustainable manner. This plan should include a "crawl, walk, run" framework with immediate, intermediate, and long-term objectives to manage the time requirements for successfully implementing the outlined goals.

We think it is important to continue to foster the convergence of educational institutions, governmental agencies, and commercial entities to establish the operational capabilities needed to address research gaps and support agile development methodologies

With commercial and governmental partners already in line to support this initiative and the potential for turnkey resources, the problem of the *ignorosphere* can be solved.

Appendix A – List of Registered Participants

Name	Company/School	Email	Att
Jennifer Acevedo	AgWest	jennifer.acevedo@agwestfc.com	✓
Grant Acevedo	Paso Robles High School	granttacevedo@gmail.com	✓
Jeffrey Armstrong	Cal Poly, San Luis Obispo	jarmstro@calpoly.edu	✓
Yotam Barr	Cal Poly, San Luis Obispo	ybarr@calpoly.edu	
Chris Bausch	City of Paso Robles	CBausch@prcity.com	✓
Kris Beal	City of Paso Robles	kbeal@prcity.com	✓
Steven Beck	Loma Seca Vineyards	steven@lomaseca.com	✓
Neil Bedagkar	Cal Poly, San Luis Obispo	nbedagka@calpoly.edu	
John Bellardo	Cal Poly, San Luis Obispo	bellardo@calpoly.edu	
Logan Bishopric	San Luis Obispo Propulsion Technologies	lbishopric@hotmail.com	
William Britton	Cal Poly, San Luis Obispo	bibritto@calpoly.edu	✓
Olivia Carey	Cal Poly, San Luis Obispo	carey.d.olivia@gmail.com	✓
Alex Castellar	Cal Poly CubeSat Laboratory	acaste42@calpoly.edu	
Subhash Chellappan	Launch On Demand	subash.chellappan@launchondemand.space	
Dan Ciccateri	All Points, LLC	dciccateri@allpointsllc.com	✓
Cameron Coleman	Cal Poly	cjmclur@calpoly.edu	✓
Kurt Colvin	Cal Poly, San Luis Obispo	kcolvin@calpoly.edu	✓
Henry Danielson	Cal Poly, San Luis Obispo	hdaniels@calpoly.edu	✓
Kyle Dart	Paso Robles High School	Kyledart314@gmail.com	✓
Bruce DeBruhl	Noyce School of Applied Computing	bdebruhl@calpoly.edu	✓
Dustin DeBrum	Cal Poly, San Luis Obispo	ddebrum@calpoly.edu	✓
Dennis Derickson	California Polytechnic State University	ddericks@calpoly.edu	✓
Dianne DeTurris	Cal Poly, San Luis Obispo	ddeturri@calpoly.edu	✓
Aadi Dhanda	Cal Poly, San Luis Obispo	aadidhanda@gmail.com	
Connor Doherty	Cal Poly, San Luis Obispo	cmdohert@calpoly.edu	
John Donaldson	JD4Homes	john@jd4homes.com	✓
Liam Duckworth	Cal Poly	liduckwo@calpoly.edu	✓
Madi Dulisse	ICEYE US	Madeline.dulisse@iceye.us	✓
Steve Dunton	Cal Poly, San Luis Obispo	sdunton@calpoly.edu	✓
Tom Erskine	Country Real Estate, Inc.	gwen@countryrealestate.com	✓
Gwen Erskine	Country Real Estate, Inc.	gwen@countryrealestate.com	✓
Calvin Fong	Cal Poly SLO, Cal Poly Space Systems	cfong28@calpoly.edu	
Michael Foote	REACH	mfoote@reachcentralcoast.org	✓
Brenna Fowler	ChangeAerial	byfowler@gmail.com	
Rocky Garcia	SpaceX	Rocky.Garcia@spacex.com	
Steve Gregory	City of Paso Robles	msponhultz@prcity.com	✓

Conference on Advancing MLT Atmospheric Studies through Commercial Suborbital Vehicles
Final Report - NSF Award ID 2432335

Elizabeth Gross	Cal Poly CubeSat Laboratory	lgross04@calpoly.edu	
Jonathan Holly	Cal Poly, San Luis Obispo	Jcholly@calpoly.edu	✓
Madeleine Hott	Cal Poly, San Luis Obispo	mhott@calpoly.edu	✓
Chris Huot	City of Paso Robles	CHuot@prcity.com	✓
Jim Irving	JimIrving.com	jim@jimirving.com	✓
Ibisia Jack	San Diego State University	pjack1220@sdsu.edu	
Jamey Jacob	OAIRE - Oklahoma State University	jdjacobs@okstate.edu	✓
Glenn Johnson	Paso Robles Pilots Association	Glenn805@icloud.com	✓
Evan Johnston	Paso Robles High School	ewjohnston@pasoschools.org	✓
Tom Jones	Aerospace Museum of California	Director@AerospaceCA.org	✓
Karen Jones	Aerospace Museum of California	Advancement@AerospaceCA.org	✓
Paul Jurasin	EmPathIze Innovation and Foresight	paulj@empathizeif.com	✓
Eric Kemp	USSF SLD30/DTO	eric.kemp.5@spaceforce.mil	
Rudra Khakhar	Cal Poly, San Luis Obispo	rkhakhar@calpoly.edu	
Cheree Kiernan	Integrated Launch Solutions, Inc.	cheree.kiernan@ilsorporation.com	✓
Jim Klo	SRI International	jim.klo@sri.com	✓
Scott Knuckles	EduCyber Solutions	scott@knuckles.today	
Justin Kopcinski	Cal Poly, San Luis Obispo	jkopcin@gmail.com	✓
Maneesh Kumar	Cal Poly, San Luis Obispo	mkumar05@calpoly.edu	✓
Katherine Legg	San Jose State University	Katherine.legg@sjsu.edu	
Todd Lindner	RS&H	Todd.Lindner@rsandh.com	✓
Jennifer Loftus	Paso Robles Joint Unified School District	jloftus@pasoschools.org	✓
Warren Long	Optimum Growth Group	wlong1234@gmail.com	✓
Jeff Long	Broad Horizon Media	Jeffdirect1@gmail.com	✓
John Lozano	IHM Outdoors	Johnlozano@yahoo.com	
Marcy Mabry	SpaceLaunch	marcy.mabry@spacelaunch.space	
Dale Magee	Catalyst Consulting	Dale@catalystconsulting.biz	✓
Jared Malapit	Precision Construction Services	jared@precision.services ryan.meisberger@stellar-exploration.com	✓
Ryan Meisberger	Stellar Exploration		✓
Robert Meyer	California Employment Training Panel	Robert.Meyer@etp.ca.gov	✓
Markus Mieritz	Cal Poly, San Luis Obispo	markuskm26@gmail.com	✓
Victoria Natalie	OAIRE - Oklahoma State University	victoria.natalie@okstate.edu	✓
Kali Nowakowski	Cal Poly Partners	kgwagner@calpoly.edu	✓
Sedat Ozer	Cal Poly, Pomona Cal Poly CubeSat Laboratory/Cal Poly SLO	sozer@cpp.edu	✓
Lorenzo Pedroza	Student	lapedroz@calpoly.edu	✓
Julie Pruniski	REACH	julie@reachcentralcoast.org	✓
Robert Randle III	Cal Poly, San Luis Obispo	rbrandle@calpoly.edu	✓
Erin Reilly	San Diego State University	ereilly0150@sdsu.edu	✓
Quinn Ricci	Cal Poly, San Luis Obispo	qricci@calpoly.edu	

Conference on Advancing MLT Atmospheric Studies through Commercial Suborbital Vehicles
Final Report - NSF Award ID 2432335

Emili Rios	United States Space Force	emili.rios@spaceforce.mil	✓
Sharen Roden	City of Paso Robles	sroden24@yahoo.com	✓
Khaki Rodway	Dawn Aerospace	khaki@dawn aerospace.com	✓
Isaac Rudnick	Cal Poly, San Luis Obispo	irudnick@calpoly.edu	✓
Jack Ryan	Cal Poly, San Luis Obispo	jryan39@calpoly.edu	✓
Toby Sagi	SLO Propulsion Technologies	tsagi@calpoly.edu	
David Sanchez	Streamline Aero	david@streamline.aero	✓
Mark Scandalis	Paso Robles Airprot	mscandalis@prcity.com	✓
Kyle Schumacher	Cal Poly, San Luis Obispo	kschum01@calpoly.edu	✓
Ahmol Sharma	Cal Poly, San Luis Obispo	asharm77@calpoly.edu	✓
Stan Shull	Alliance Velocity, LLC	stan@alliancevelocity.com	✓
Paul Sloan	City of Paso Robles	psloan@prcity.com	✓
Todd Smith	Johns Hopkins University	H.Todd.Smith@jhuapl.edu	✓
Tyler Sova	SLO Propulsion Technologies	tsova@calpoly.edu	
Curtis Streeter	Deep Blue Integration, Inc.	Curtis@deepblueintegration.com	✓
Tomas Svitek	Stellar Exploration	tomas@stellar-exploration.com	
Winnie Trinh	Cal Poly, San Luis Obispo	witrinh@calpoly.edu	✓
Laki Vlachos	Blue Origin	avlachos@blueorigin.com	✓
Anthony Williams	Paso Robles High School Office of California State Senator John Laird	antdwill47@gmail.com kara.woodruff@sen.ca.gov	✓
Kara Woodruff Calla Woodruff Lyons	Cal Poly, San Luis Obispo	cawoodru@calpoly.edu	✓
Erik Wright	Precision Construction Services	erik@precision.services	✓
Diane Zannotti	Office of Congressman Jimmy Panetta	Diane.Zannotti@mail.house.gov	✓
Zackery Zounes	United States Air Force	zackeryzounes@att.net	

Appendix B – Agenda

CONFERENCE ON ATMOSPHERIC RESEARCH USING COMMERCIAL SUBORBITAL VEHICLES

February 27-28, 2025

Allegretto Vinyard Resort, Paso Robles

Thursday, February 27, 2025		
7:30 a.m. – 3 p.m.	Registration	
7:30 – 8:30 a.m.	Breakfast Bar	
8:30 – 8:40 a.m.	Jeff Armstrong	Welcome from Cal Poly President
8:40 – 8:45 a.m.	Dustin DeBrum	Conference Overview & Logistics
8:45 – 9:30 a.m.	Todd Smith	The Science of the Mesosphere-Lower Thermosphere (MLT)
9:30 – 10:30 a.m.	Stan Shull	Keynote speaker: Space to Grow
10:30 – 11 a.m.	Morning Break	
11 – 11:30 a.m.	Khaki Rodway	Dawn Aerospace: Next Generation of Suborbital Vehicles
11:30 a.m. – 12 p.m.	Ryan Meisberger	Stellar Exploration: Rocket Testing Operations
12 – 1:30 p.m.	Lunch Buffet	
1:30 – 1:40 p.m.	Kara Woodruff	Remarks from Senator Laird's Office
1:40 – 2:20 p.m.	Bill Britton/Kurt Colvin/ Paul Sloan	Paso Robles Spaceport Vision, Educational Programs and Opportunities
2:20 – 2:50 p.m.	Todd Smith	MLT Research Case Study
2:50 – 3:10 p.m.	Dianne DeTurris	Engaging Students in Space Technology Research
3:10 – 3:40 p.m.	Dennis Derickson	Space IoT Research Case Study
3:40 – 3:50 p.m.	Afternoon Break	
3:50 – 4:20 p.m.	Evan Johnston (moderator)	Panel: Local Community STEM Showcase and Spaceport Interest Panelists: Grant Acevedo, Kyle Dart, Anthony Williams
4:20 – 4:30 p.m.	Dustin DeBrum	Reflections and Summary for the Day
4:30 – 6 p.m.	Happy Hour Reception (Sponsored by JUSTIN)	

THIS WORK IS
SUPPORTED BY

the U.S. National Science Foundation under Award No. 2432335

U.S. National
Science Foundation

AND

DIGITAL TRANSFORMATION HUB
CALIFORNIA CYBERSECURITY INSTITUTE

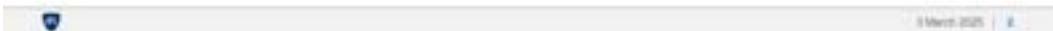
Employment Training Panel

Friday, February 28, 2025		
7:30 – 8:30 a.m.	Breakfast Bar	
8:30 – 8:50 a.m.	Jamey Jacob	From the Ground Up to Middle-Out: Drones and Balloons for Assistive Suborbital Observations
8:50 – 9:10 a.m.	Jess Bleakley	PolySat Program
9:10 – 9:20 a.m.	Henry Danielson/ Isaac Rudnick	Cal Poly AMSAT Project
9:20 – 9:40 a.m.	Mark Scandallis	Paso Robles Air and Spaceport Licensing Update
9:40 – 10 a.m.	Cheree Kiernan ILS	Understanding Spaceport, Vehicle, and Payload Licensing
10 – 10:20 a.m.	Morning Break / Panel Setup	
10:20 – 11 a.m.	Paul Sloan (moderator)	Panel: Bridging The Gap: Collaboration between Industry, Academia and Government for Spaceport Operations. Panelists: Robert Meyer (ETP), David Sanchez (Streamline Aerospace), Bob Crockett (Cal Poly), Mike Mierau (Premiere Valley Bank)
11 – 11:30 a.m.	Dustin DeBrum	Workshop Closure and Next Steps Informal Discussion - Open to All
11:30 a.m. – 1 p.m.	Boxed Lunches	

Appendix C - Presentations

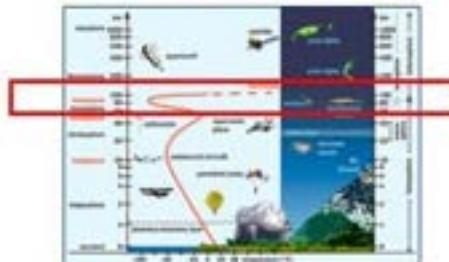
C1 - The Science of the Mesosphere-Lower Thermosphere (MLT) –Smith

Science at the MLT-I

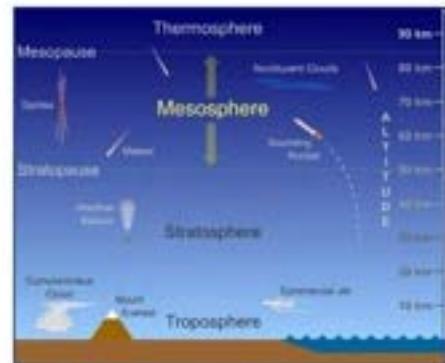

27 February 2025

NSF Conference on Atmospheric Research Using Commercial Suborbital Vehicles

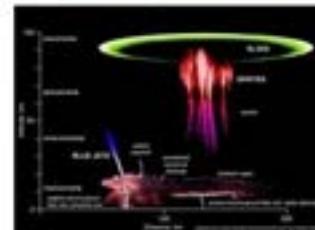
H. Todd Smith
Johns Hopkins Applied Physics Laboratory
h.todd.smith@jhuapl.edu


Outline

- Introduction to the MLT-I
- Why study the MLT-I?
- (Very brief) Introduction to commercial suborbital
- Some example MLT commercial suborbital applications...
- Summary

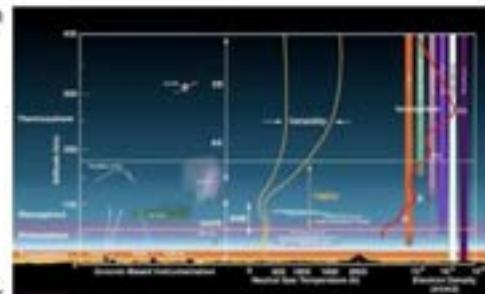

Introduction to the Mesosphere-Lower Thermosphere-Ionosphere (MLT-I)

- Earth's atmosphere generally considered from the surface to altitude of ~1000 km
- Divided into 5 main layers
 - Troposphere (~0-10 km): ~75% of atmosphere
 - Stratosphere (~10-50 km): contains most of ozone
 - Mesosphere (~50-85 km): temperatures decrease
 - Thermosphere (~85-400 km): temperatures increase
 - Exosphere (>400 km): mainly oxygen & hydrogen
- Within exosphere, particles likely escape to space
- The Ionosphere overlaps at ~60-500 km
- Commercial suborbital vehicles offer game-changing access to the Mesosphere & Lower Thermosphere ("MLT") & Ionosphere

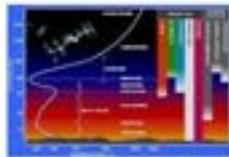


More about the Mesosphere (Part 1)

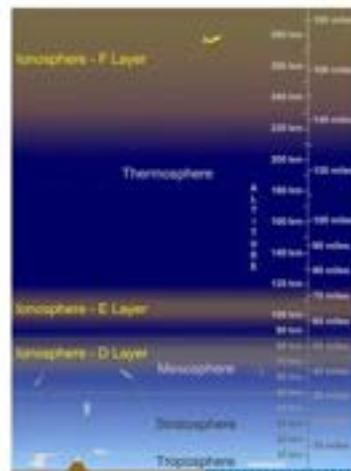
- Directly above the Stratosphere @ ~50-85 km (~31-53 miles)
- Considered "middle atmosphere" (along with Stratosphere)
- Temperatures decrease with altitude
- Coldest atmospheric temperature ~-90°C
- Stratopause: lower boundary with Stratosphere
- Mesopause: upper boundary with Thermosphere
- Difficult to directly study
 - Too low for satellites/too high for balloons and aircraft
 - Mainly studied with brief, infrequent sounding rockets
 - Still much to learn about the mesosphere


More about the Mesosphere (Part 2)

- Gas molecules & atoms are thoroughly mixed
- Most meteors vaporize in this layer
 - Relative high concentration of iron & other metals
- Surprising "Noctilucent Clouds" or "Polar Mesospheric Clouds" sometimes near the poles
 - Much higher than 'normal' clouds
 - Form in a much drier environment (than Troposphere)
- Odd electrical discharges akin to lightning, called "sprites" and "ELVES"
- Various waves and tides carry energy from below into the Mesosphere
 - Drives most global circulation


More about the Thermosphere (Part 1)

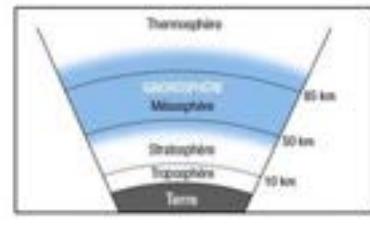
- Directly above the Mesosphere @ ~90-500 km (~55-600 miles)
- Contains traditional boundary to space @~100 km (~62 miles)
- Temperatures increase with altitude
 - Climb sharply up to ~200-300 km and then levels off
 - Upper Thermosphere can exceed 2000° C
- Solar activity strongly influences temperature
 - Typically ~200° C (hotter in daytime)
 - ~500° C when Sun is very active
- Thermosphere: upper boundary with Exosphere
- Lower Thermosphere also difficult to directly study
 - Too low for satellites/too high for balloons and aircraft
 - Mainly studied with brief, infrequent sounding rockets


More about the Thermosphere (Part 2)

- Critical transition region from collisional to non-collisional.
 - Energetic Solar UV and X-ray photons break apart molecules
 - Upper thermosphere main components: Oxygen (O), Nitrogen (N), and Helium (He)
- Most solar X-ray and UV radiation absorbed in this layer
 - Thermosphere gets hotter and expands when the Sun is active
- Wave and tides drive overall circulation
- Aurora primarily occurs in this layer
 - High energy solar photons ionize neutral gas
 - Production of ions that populated the ionosphere

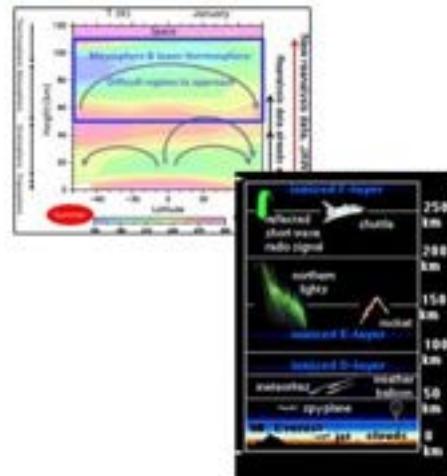
What about the Ionosphere? (Part 1)

- Overlaps the MLT @ ~60km to >300 km (~37 to >190 miles)
- Produced by electrons, ions and photons from space
 - Ionization primarily depends on solar activity (i.e. 'Space Weather')
 - Ionization processes release excess energy (photons producing aurora)
- Divided into 3 regions
 - D layer (~60-90 km) – lowest, densest layer in Mesosphere
 - E layer (~90-150 km) – typically in lower Thermosphere
 - F layer (~150-500 km) – typically in upper thermosphere
- Ionization increases in daytime

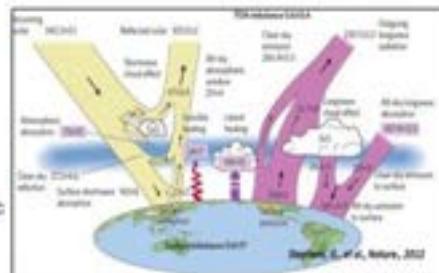

What about the Ionosphere? (Part 2)

- Ionospheric structures and densities vary greatly
 - With sunspot cycle, seasonally, and diurnally
 - With geographical location (polar, auroral zones, mid-latitudes, and equatorial regions)
 - With certain solar-related ionospheric disturbances (space weather)
- Dynamic system controlled by
 - Acoustic motions of the atmosphere
 - Electromagnetic emissions
 - Variations in the geomagnetic field
- Charged particles responsible for aurora
 - Electrically charged particles travel along Earth magnetic field lines
 - Impact South & North pole atmosphere – emit light
- Region of positive and negative impacts
 - Free electrons influence on the propagation of radio frequency electromagnetic waves
 - Possible ionospheric precursor to large earthquakes

Why study the MLT-I?


- In situ observations are traditionally difficult
 - Many questions still exist about the MLT-I
 - Sometimes referred to as the "Ignosphere"
- Suborbital region not well understood
 - How can we truly understand our atmosphere with this hole in our knowledge (modeling, prediction, how it formed, why it is here, what may happen in the future... example of Mars)
 - Global warming
 - Impacts of space weather (communications, power grid impacts, etc.)
 - Global energy budget
 - Meteor input to our atmosphere
- Geomagnetic field blankets the whole planet protecting it from many potential harmful effects unleashed by sun
- The region filters out the shortest wavelengths of ultraviolet energy from the sun before it reaches the surface of earth
- What else goes on near 100km:
 - Noctilucent Clouds
 - Gravity Wave Breaking
 - Turbopause
 - Transitional and Transformational Region

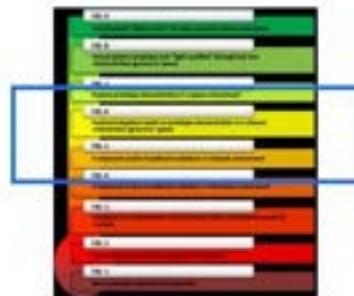
8 March 2025 | 18


The “Ignorosphere” could be our next frontier

- MLT-I altitudes are very important
 - Transition from fluid atmosphere to collision free gas
 - Atmosphere increasingly dominated by electrodynamics
 - Energy and momentum pass through this region from above and from below
 - Variability and small scale structure largely unexplored
 - Geomagnetic field blankets the whole planet protecting it from many potential harmful effects unleashed by sun
- Limited knowledge of this region (Ignorosphere)
 - Too high for aircraft and balloons
 - Too low for orbital spacecraft
 - Sounding rockets can access region but...
 - Flights are infrequent
 - Launch sites and trajectories are highly constrained
 - Limited flexibility of payload operations and payloads.
- Frequent low cost access to this region could fundamentally change our understanding of Earth's atmosphere

Some new capabilities enabled by low cost/frequent science at the edge of space

- Expanded location and time analysis
 - Repeated observations of same location
 - Sorting out spatial and temporal variability
- Exploring in situ complexity in physical systems
- Natural laboratory – long collision paths
 - Lifetime of chemical reactions and path lengths as limitation on understanding.
 - Chemical release experiments
 - Artificial aurora
 - Ionospheric modification
 - Polar Mesospheric Clouds
- Winds near the sound speed (Velocity shears and ionospheric instabilities)
- Understanding ionospheric currents
- Climate forcing – unknown extent of top-down forcing
 - Polar region vortex and downward convection
 - Nitric oxide production
 - Cosmic rays and clouds – climate exploration
- Complete “whole atmospheric” understanding


Where could expanded exploration of the MLT-I lead?

- We explore the upper atmosphere because it is interesting – it also has practical value.
 - Understanding
 - Prediction
 - Mitigation
 - Security
 - Education
 - Exploration
- A more complete understanding of our atmosphere
 - Past, present and future of the Earth
 - Planets in general (i.e. exoplanets)
 - What controls the evolution a planet?
 - What maintains the conditions for life?
 - How "special" are these conditions?

Additional benefit - More rapid advancement of instrument technology

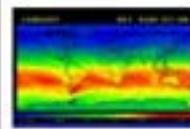
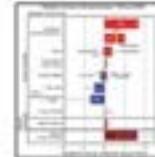
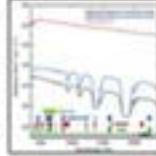
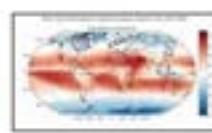
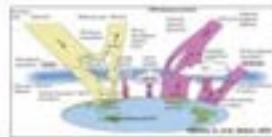
- "Catch-22"
 - Large mission instrumentation requires maturity but how do you acquire this without mission experience
 - Technology Readiness Level "valley of death"
 - Personal experience - Europa Clipper example
- Low-cost frequent flights provide excellent method of rapidly developing and testing new technology
 - Return of payload – opportunity to fly prototypes/engineering models
 - Human tended mission offer opportunity to move lab environment up to the edge of space
 - May not provide the exact required environment but still provides opportunity to improve TRL

But what do we mean by "commercial suborbital"?

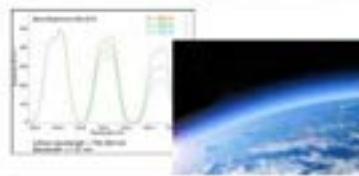
- Private companies developing revolutionary suborbital spacecraft with novel scientific and engineering applications
Routine access to the 'ignorosphere'
 - The establishment of a commercial space fleet (Kelly Act of 1925 analogy)
- Revolutionary suborbital spacecraft – game-changing attributes
 - 1-2 orders of magnitude cheaper than traditional costs
 - Human tended and untended
 - Relatively large payload capacity
 - Fully reusable with rapid turn around
 - Access to ~ 100 km
 - Guaranteed safe return of payload
 - Up to 3 minutes of micro-gravity
- Large potential for applications beyond space tourism
 - Direct research of the suborbital region
 - Technology development and flight testing
 - Low cost, frequent flight tests \rightarrow cost and schedule reductions
 - STEM education and motivation

Diverse commercial suborbital rocket powered capabilities emerging

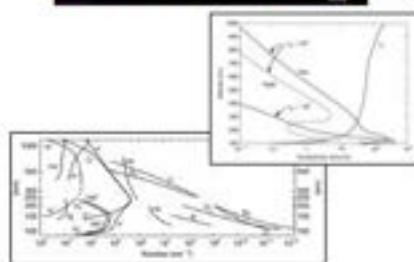
- NASA Flight Opportunities providers
 - Astrobotic - Xodiac
 - Blue Origin - New Shepard
 - EXOS Aerospace - SARGE
 - Rocket Lab USA Inc. - Electron
 - UP Aerospace - SpaceLoft
 - Virgin Galactic - SpaceShip Two
- Many others are making progress
 - Example: Dawn Aerospace MK-II

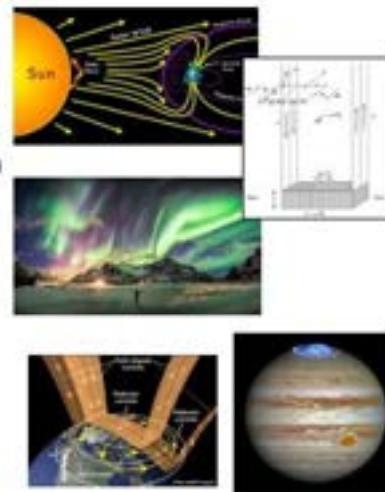
Some examples of the significant range of MLT-I commercial suborbital applications...


Global Radiation Budget

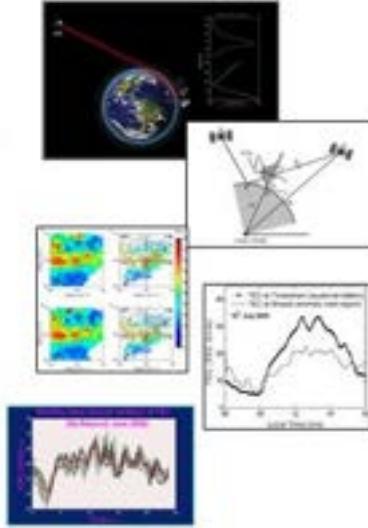
- Introduction
 - Balance between incoming solar radiation from sun and outgoing radiation emitted by Earth
 - Balanced radiation budget is critical for maintaining a stable climate, an imbalance can lead to warming or cooling
 - Impacted by clouds, aerosols, greenhouse gases, and surface properties
- Problems/questions
 - Uncertain impacts since the start of the industrial era but climate response is even more uncertain
 - Accurate understanding critical to understand current state and future of our atmosphere
 - Need to better understand total energy input & spectrum
 - Need to better understand where energy deposited (absorption/scattering by aerosols, clouds, surface, gases)
- Benefit of Commercial Suborbital
 - In situ measurements of MLT-I regions would provide unique insights
 - Calibration under-flights of Satellite would greatly improve accuracy
 - Calibration over-flights of stratospheric observations would also improve accuracy


Atmospheric composition variability determination and monitoring

- + Introduction
 - Atmospheric composition is a key component that allow life to exist on Earth
 - Primary components are N (78%), O (21%), Ar (0.9%) and trace gases (<0.05%)
 - Trace gases (0.04%) include greenhouse gas and water but are very significant
- + Problems/questions
 - Detailed observations of spatial/temporal variability are essential for understanding all aspects of our atmosphere
- + Benefit of Commercial Suborbital
 - In situ compositional observations of the difficult to reach suborbital region could dramatically improve atmospheric modeling
 - Oxygen A-band observations can be used as a Mesopause-region "Thermometer"


Ionosphere plasma density and variability

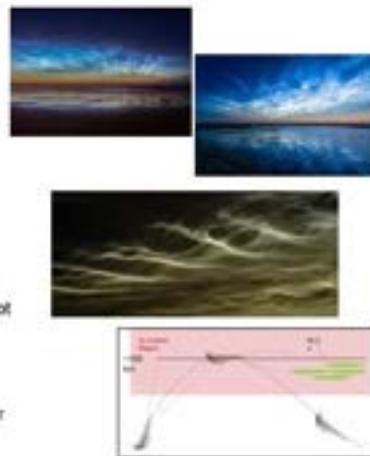
- + Introduction
 - The ionized part of the Earth's atmosphere comprised of free electrons and ions
 - Created by solar radiation
 - Conductive layer that allows radio waves to "bounce" around the world
- + Problems/Questions
 - Can dramatically impact satellite communication and radio wave propagation
 - Impact to GPS/GNSS signals
 - D layer (and lower E layer) difficult to access
- + Benefit of Commercial Suborbital
 - Frequent access to the D layer would be game-changing
 - Better understanding of
 - Day/night variability
 - Accurate particle composition and temporal/spatial variability
 - Relatively rapid response to study space weather events


Aurora & Auroral Currents

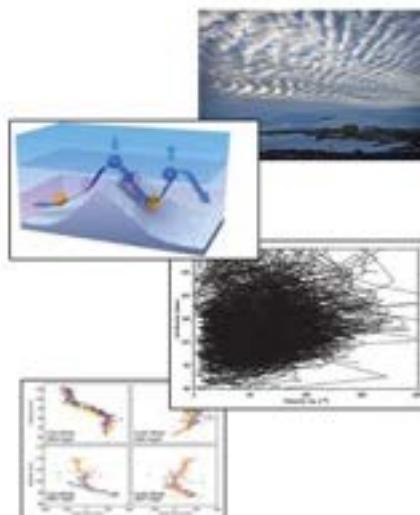
- + Introduction
 - Aurora are produced by solar wind interaction with the Earth's magnetic field
 - Charged particle travel along the magnetic field lines until they interact with atmospheric particles (usually near the north or south poles)
 - Particle interaction produce light emissions
 - Colors (wavelength) are dependent on atmospheric species and solar wind particle energy
 - Observed at multiple planets
- + Problems/questions
 - Improved understanding helps improve knowledge of atmospheric and interactions
- + Benefit of Commercial Suborbital
 - Opportunity to study ionosphere at lower altitudes (but must launch at higher & lower latitudes)
 - Responsive in situ observations of aurora and currents could provide game-changing insight

Total Electron Content

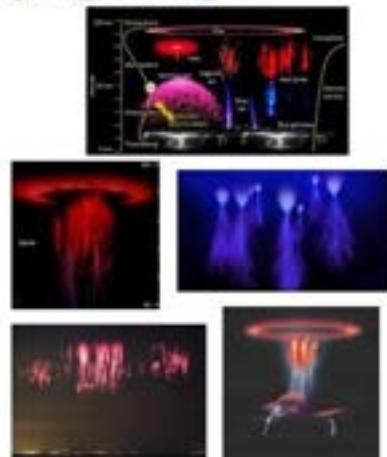
- + Introduction
 - Dual frequency signals between a source and GPS/GNSS satellites used to determine the Total Electron Content (TEC)
 - TEC is defined as the integral of the electron density along a trajectory path from the transmitter to the receiver.
 - These observations are routinely performed from ground stations
- + Problems/questions
 - Important for improving GPS signal accuracy
 - Efficient method for monitoring ionosphere structure, dynamics and space weather impacts.
 - TEC provides the total content on each line of sight but does not reveal the distribution along the line of sight
- + Benefit of Commercial Suborbital
 - Rapidly changing lines of sight could possibly provide information about the distribution along each line of sight (i.e. 3D tomography)
 - Rapid response observation could provide insight into temporal changes to the ionosphere


Negative ions – connection to other worlds

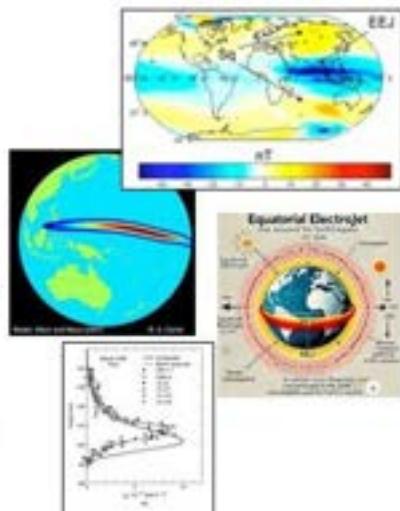
- Introduction
 - NASA Cassini Mission spent 13 (2004-2017) years at Saturn and dramatically increased our planetary knowledge
 - Saturn's largest moon, Titan (larger than Mercury), has an extremely dense atmosphere that may represent an primordial version of Earth's atmosphere
 - Negative ions unexpectedly discovered at Titan
 - Data at Earth suggests significant daylight variability in composition and density of negative ions in the D-region
- Problems/questions
 - Negative ions are extremely important for driving atmospheric chemistry and present in Earth's atmosphere at suborbital altitudes
 - Far more negative ion observations at Titan than Earth (211 vs. ~20)
- Benefit of Commercial Suborbital
 - Commercial suborbital vehicles of this difficult to reach region offer the possibility of dramatically increasing our knowledge of negative ions in Earth's atmosphere
 - Opportunity to measure negative ion composition multiple times per day and/or night will provide new insight into the microphysics and chemistry of this region and allow us to test existing chemical models.
 - Offers the potential to fundamentally improve our understanding of atmospheric chemistry, dynamics and predictive modeling


Noctilucent clouds (NLCs)

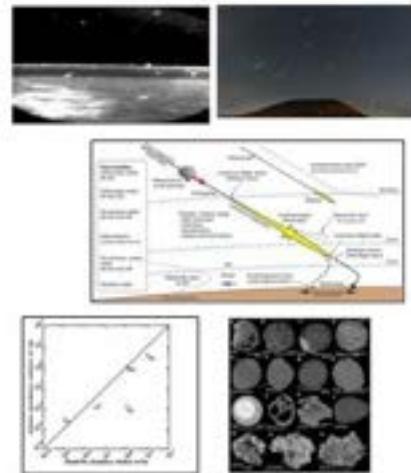
- Introduction
 - Rare, wispy, blue or silvery clouds that appear in upper atmosphere during summer
 - Also known as polar mesospheric clouds
 - Only visible at latitudes between 45° and 80° (too faint to be seen in daylight)
 - Composed of tiny ice crystals
 - Exist at ~76 km to ~85 km altitudes
- Problems/questions
 - Data suggests NLCs require water vapor, dust, and very cold temperatures to form but sources of this dust and vapor are not known with certainty
- Benefit of Commercial Suborbital
 - More frequent in situ observations NLCs could dramatically improve understanding of them, how they are formed and their impact on the atmosphere
 - Help confirm the dust and vapor sources


Gravity waves

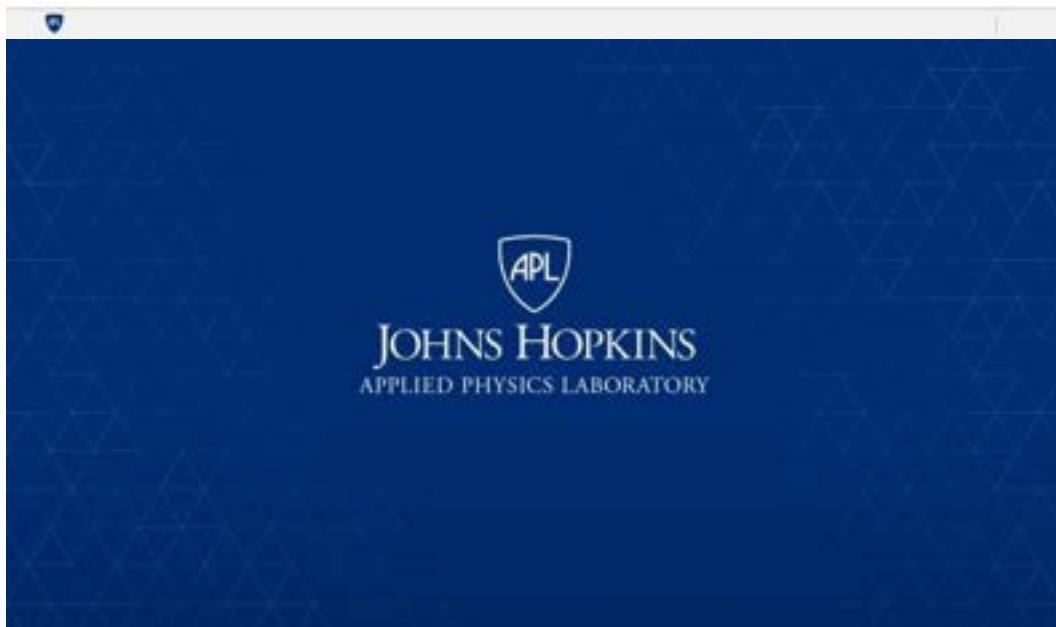
- Introduction
 - Ripples or wave-like disturbances in the atmosphere
 - Rise and fall in a wave-like pattern
- Problems/questions
 - Can play a crucial role in transferring energy and momentum between atmospheric layers
 - Gravity waves that reach ionosphere cause traveling ionosphere disturbances
 - Provide a good mechanism for studying greatly varying wind velocities
- Benefit of Commercial Suborbital
 - Gravity waves can be observed from space and ground but coincident in situ observations provide great insight into particle interactions and dynamics caused by these features


Upper Atmosphere (Ionospheric) Lightning

- Introduction
 - Short-lived (milli-2 seconds) electric breakdown above normal lightning
 - Thought produced by luminous plasma interaction (TLE: Transient Luminous Events)
 - Generally bright emission above storms
 - Many types: sprites, sprite halos, ghosts, blue jets, gigantic jets, pixies, gnomes, trolls, blue starters, and ELVEs
 - Theorized in 1920's but 1st video was in 1989
 - Observed at other worlds (such as Jupiter)
- Problems/questions
 - Unusual phenomena that are not well understood
 - May dramatically alter chemical and electrical MLT-I properties
- Benefit of Commercial Suborbital
 - In situ observations of the near regions can provide insight into formation
 - Responsive, coordinated (with ground and satellite) observations could help us understand these fascinating phenomena


Electrojets

- Introduction
 - Concentrated electric currents that move through the Earth's ionosphere.
 - Equatorial – permanent daytime eastward flow
 - Auroral – associated with aurora and circles the poles
 - At 100-130 km during solar quiet times
- Problems/questions
 - Fluctuations can disrupt communications (radio and GPS)
- Benefit of Commercial Suborbital
 - In situ (and responsive) measurements could greatly increase our understanding of how electrojets form, perpetuate and interact with the rest of the atmosphere
 - Better understanding of electrojets at 100-130 km would improve predictions and mitigations


Meteor/metal input into MLT

- Introduction
 - Meteors are constantly impacting the atmosphere.
 - Most are very small (peak flux: 100-200 micrometer meteors)
 - Significant atmospheric input (30-180 tons/day)
 - Primary ablation region: 80 km - 130 km
 - Forms a metallic layer in the mesosphere (primarily Fe, Mg, Na and Si)
- Problems/questions
 - The seasonal variability of these metals is different
 - Why is there no Ca?
 - How do these metals interact with atmospheric particles?
- Benefit of Commercial Suborbital
 - In situ composition and dynamic observations could provide critical understand
 - Combined with ground observations could provide unique insight
 - Detailed small scale spatial/temporal observations are required

Summary

- MLT-I region of our atmosphere is extremely important but many questions remain
 - Critical transition region of the atmosphere
 - Traditionally difficult to reach
- Emerging commercial suborbital vehicles offer many game-changing capabilities that could significantly improve our knowledge of Earth's atmosphere at suborbital altitudes
 - Low cost
 - Frequent flight cadence
 - Guaranteed return of payload
 - Possibility of human tended experiments
 - Essential raises the laboratory environment to the edge of space
- It is time to start exploring the Earth's next frontier

C2 - Space to Grow – Shull

**Space to Grow:
Overview of the Space and Satellite Opportunity**

Presentation Summary Document

Conference on Atmospheric Research
Using Commercial Suborbital Vehicles

Palo Alto, California
February 27, 2025

Stan Shull
Alliance Velocity

© 2025 Alliance Velocity, Inc. All Rights Reserved.

Upper Atmosphere: Gateway to Space

- Research
- Space weather
- Testing
- Tech development
- Experience
- Education

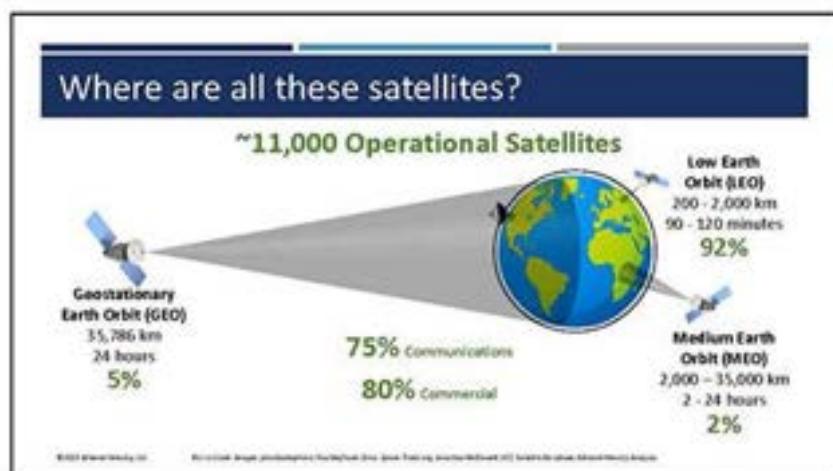
© 2025 Alliance Velocity, Inc. All Rights Reserved.

Topics

- Introduction to Satellites
- Global Space Economy
- Future Space Opportunities

Topics

- Introduction to Satellites
- Global Space Economy
- Future Space Opportunities

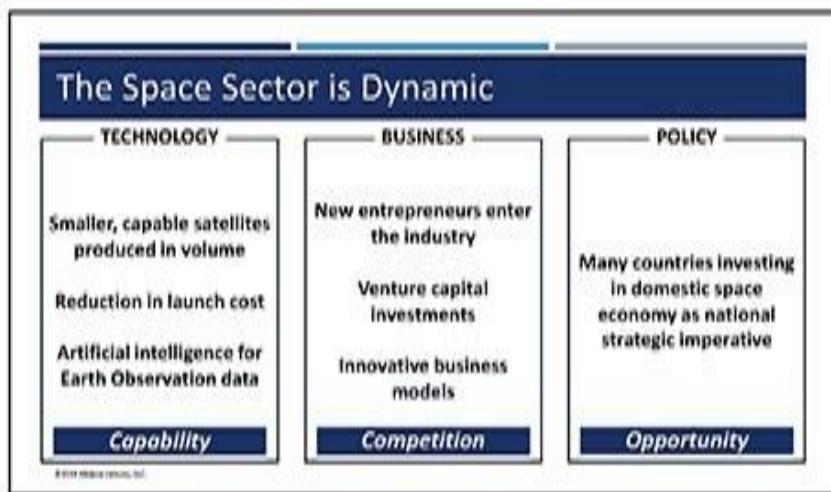
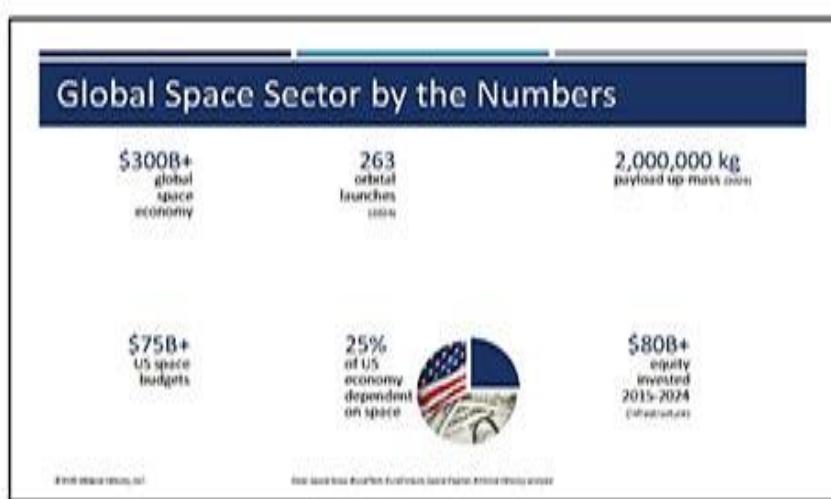

True Stories

- A young couple trapped in remote canyon is rescued due to combination of GPS navigation and communication satellite direct to cell phone connectivity
- Satellite-delivered internet learning program in Kenya brings improved education to 180,000 students

Satellite Earth Observation Examples

- Spot pollution
- Protect forests
- Detect illegal activity
- Improve weather forecasts
- Provide comprehensive climate data
- Improve efficiency and sustainability in many industries:
 - Agriculture
 - Transportation
 - Utilities
 - Mining
 - Energy
 - Insurance and Finance

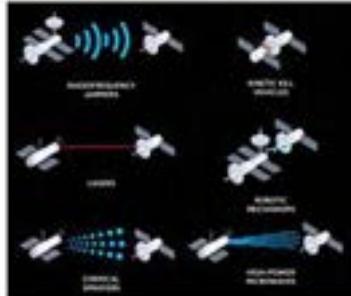
Economy & Security Rely on Satellites			
	Communications	Navigation (GPS)	Earth Observation
Commercial/Civil	<ul style="list-style-type: none">• Remote connectivity• IoT/Smart connectivity• Connectivity on the move	<ul style="list-style-type: none">• Smartphones• Air transportation system• Power grid, internet, financial transaction, cellular systems	<ul style="list-style-type: none">• Monitoring of Earth and human activity<ul style="list-style-type: none">• Optical• Hyperspectral• RF• Radar• Humanitarian assistance
National Security	<ul style="list-style-type: none">• Command and control for air, sea, land	<ul style="list-style-type: none">• Mission critical for all aspects	<ul style="list-style-type: none">• Detect and track adversaries and threats

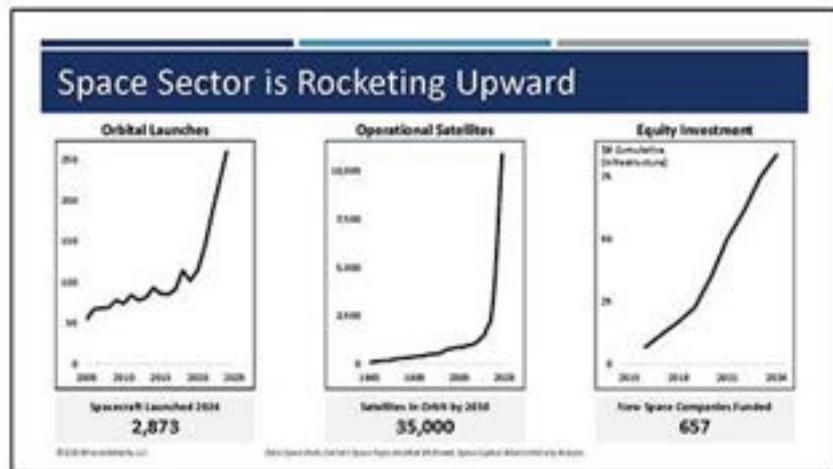
Topics

- Introduction to Satellites
- Global Space Economy
- Future Space Opportunities

© 2024 Blue Origin, LLC



Space is a Contested Domain


Moscow Threatens U.S. Satellites

China and US Satellites Play Dangerous 'Cat and Mouse'

Satellite Warfare is a Distinct Possibility

Source: Space Studies Board, Space Sector in 2030: Space Capital Assessment Report

SpaceX & New Space Leaders

- SpaceX
 - Driver of innovation & change
 - Leading launch provider
 - Top satellite manufacturer & operator
 - Big supplier to NASA/DoD
 - Dominant position
- Other new space leaders coming on strong
 - Blue Origin
 - Amazon Project Kuiper
 - Rocket Lab
 - Firefly Aerospace
 - Sierra Space
 - Others
- Driving space commercialization growth globally

Space Odyssey 2020s: A Tale of Two Models

<ul style="list-style-type: none">■ Exquisite■ 5-10+ years development■ Product■ Low volume■ Cost-plus contracts	<ul style="list-style-type: none">■ Standardized■ <2 years development■ Commercial services■ High volume■ Fixed-price contracts
--	--

The New Commercial Space Race

Why Deere thinks satellites are the next big technology to invest in

Eli Lilly heads to space to explore next frontier of drug development

Microsoft takes on Amazon in the data space race with Azure Orbital

Swiss Re Forms Strategic Partnership with Satellite Operator for Flood Monitoring

Exxon Mobil Partnership to Deploy Satellite Technology For Global Emissions Mitigation

DHL expands its global logistics operation to include outer space missions

© 2024 Newsomedia LLC

The New Commercial Space Race

Space Force wraps initial plan for building 'hybrid' commercial/military 'saternet'

Spy agency awards 'historic' contracts to commercial satellite firms

Pentagon's commercial satellite internet services program soars to \$13 billion

SES to Buy Intelsat in \$3.1 Billion Bid to Rival Musk's Starlink

Lockheed Martin completes acquisition of smallsat manufacturer Terran Orbital

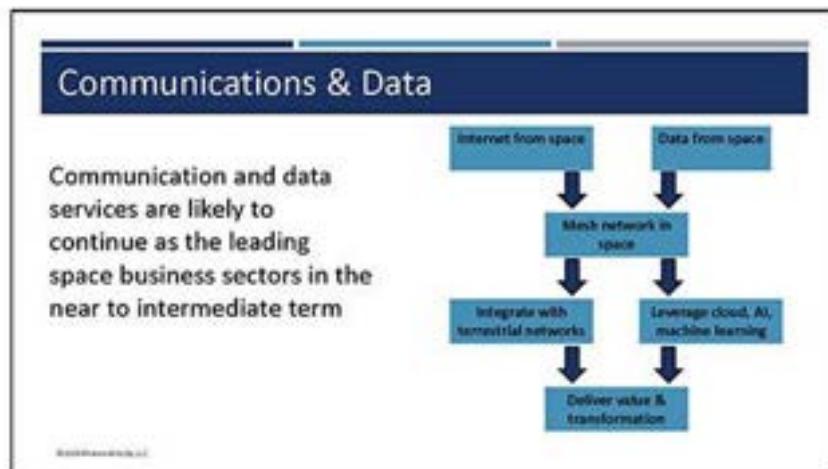
Boeing Explores Sale of Space Business

© 2024 Newsomedia LLC

The New Commercial Space Race

Verizon Jumps into Satellite-to-Cell Market With AST SpaceMobile

AT&T deal will make every phone a satellite phone


T-Mobile Takes Coverage Above and Beyond With SpaceX

Lynk Successfully Deploys Two More Orbital 'Cell Phone Towers in Space'

Globalstar soars on Apple's \$1.7 billion satellite investment

Topics

- Introduction to Satellites
- Overview of Global Space Economy
- Future Space Opportunities

Other Sectors & Business Opportunities

- Space science and exploration
- Human spaceflight
 - Commercial private
 - Moon goal: US & China
 - International competition
- Private space stations
- Satellite servicing
- Assembly & manufacturing
- Lunar economy
- Energy and mining

Thank You

Stan Shull

● Alliance Velocity

● <http://www.alliancevelocity.com>

● <http://www.alliancevelocity.com/12months>

● stan@avllc.com

● www.alliancevelocity.com

● www.alliancevelocity.com/12months

● stan@avllc.com

© 2013 Alliance Velocity LLC

C3 - Dawn Aerospace: Next Generation of Suborbital Vehicles – Rodway



Next Generation of Suborbital
Vehicles
or
Accelerating Science:
A Rocket-powered Aircraft as a
Dedicated Vehicle for Frequent
Suborbital Research and
Education Missions

Khaki Rodway
February 27, 2024

A spacecraft or aircraft that reaches space but does not orbit the Earth.

Has a trajectory that takes it to or just above the **Kármán line (100 km or 62 miles above sea level, the recognized boundary of space)** before **succumbing to gravity** and falling back to Earth.

USES OF SUBORBITAL VEHICLES

Space
Tourism

Scientific
Research

Military &
Defense
Applications

Technology
Testing &
Development

Atmospheric &
Earth Science
Studies

BENEFITS OF SUBORBITAL VEHICLES

- Lower Cost** – Suborbital flights are much cheaper than full orbital missions.
- Faster Turnaround** – Missions can be launched, tested, and repeated quickly.
- Less Risk** – If something goes wrong, the vehicle doesn't stay stuck in space.
- Targeted Testing** – Ideal for experiments that only need a few minutes in space.

EXAMPLES OF SUBORBITAL VEHICLES

1961
Mercury
Redstone

1963
X-15

2004 SpaceShipOne X-Prize Flights

2015
New
Shepard

2026 Virgin Galactic Delta Class

COMMERCIAL SUBORBITAL VEHICLES IN 2025

Vehicle	Number of Flights	Max Altitude	Period of Activity
Virgin Galactic SpaceShip One	17	112 km	2003 - 2004
Virgin Galactic VSS Unity / Galactic #	12 (above 50 km)	89 km	2018 - 2024
Blue Origin New Shepard	29 + 1 planned	118 km	2012 - present
Dawn Aerospace Mk-IIA Aurora	58 + 4 planned	82,500 ft (25 km)	2021 - present

DAWN AEROSPACE IN NUMBERS

110

Headcount
Established 2017

4

Locations - NZ, NL, FR & USA
Christchurch, NZ headquarters
Infrastructure required for USA operations

115

Thrusters in space
25 different spacecraft
2 thrust classes

17

Rideshare launches
On Falcon 9, IM, Vega, and Soyuz-2

58

Mk-II Flights
Same vehicle in Operational
Environment (TRL 8)
47 jet power, 10 rocket power

25+

Customers
North America, Europe, Asia, & Oceania

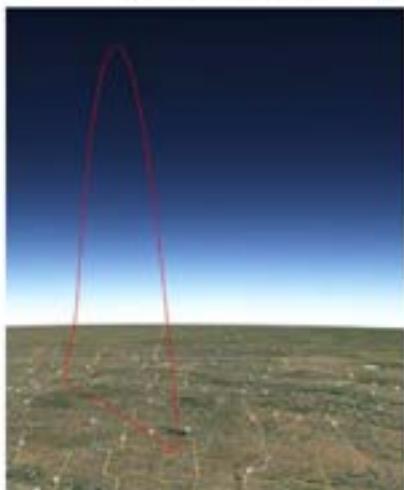
THE MK-II AURORA A SUPERSONIC UNCREWED SUBORBITAL AIRCRAFT

Core Features

- Rocket-powered suborbital aircraft
- Highly reusable - within 3 hours
- Mission-dedicated payload bay
- Fully self-contained and responsive operations
- Remotely-piloted

Size

- 4.8m long x 2.4 m wing tip to wing tip
- 400kg MTOW


Performance

- up to 100+ km
- Up to Mach 3.5
- 2900 m/s deltaV

Runway

- Rapidly deployable to/from any 1000m runway
- Horizontal takeoff and landing

MK-II REPRESENTATIVE FLIGHT PATTERN

- Boost-glide to the upper atmosphere and edge of space,
- 100 km altitude or target specific atmospheric layers
- Maintaining specific Mach number or dynamic pressure profiles
- Specific gravity profiles such as Moon or Mars gravity
- High-speed and low-altitude passes

Trajectory - Customizable

Maximum altitude - Up to 100 km (330,000 ft)

Maximum speed - Up to Mach 3.5

Maximum range - 300 km (185 miles)

Microgravity duration - Up to 3.5 minutes

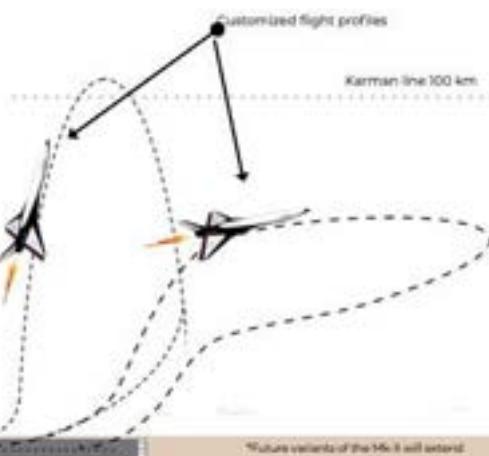
Maximum G-Load - 9

MK-II OPERATIONS SCENARIOS

Flight Operations

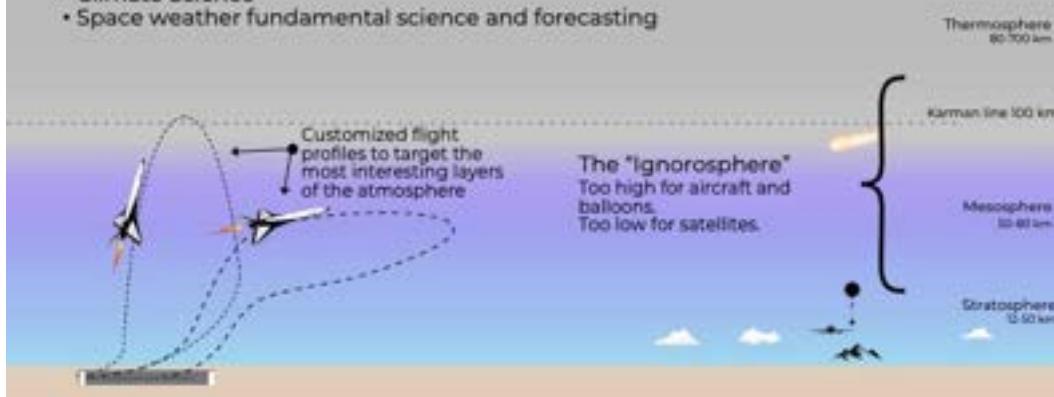
- Rapid space access
- High flight cadence in fast timeframe
- Operational altitudes 20 to 100+ km
- Maneuverable
- Downrange capability

Payload Operations


- Payload dedicated flights
- Instrument external access
- Optical window in payload bay
- Payload deployment possible (Mk-IIb)
- No human-tended experiments

FLYING LAB - TECHNOLOGY DEVELOPMENT PLATFORM

The Mi-2 can function as a **flying lab**, providing **daily access to high speed and high-altitude environments** an enabling **rapid maturation** of important technologies such as:


- High supersonic and hypersonic* aerodynamics
- Material science and engineering
- Autonomous systems and AI
- Structural health monitoring
- Advanced hardware development
- Technology demonstration of:
 - remote sensors such as cameras in vacuum, looking through the full atmospheric spectrum;
 - radio equipment at high altitude and high velocity.
- Education platform for student-built payloads.

Frequent and low cost access to the "ignorosphere" unlocks new science and a more complete understanding of our atmosphere which impacts:

- Weather forecasting
- Climate Science
- Space weather fundamental science and forecasting

SUBORBITAL RESEARCH AND TECHNOLOGY DEVELOPMENT

Existing Rocket-Powered Suborbital Vehicles and Sounding Rocket Payload Opportunities

	DAWN Mk-II Aurora	New Shepard	SpaceShipTwo	Sounding Rockets	Stratospheric Balloons
Price per flight:	\$100,000 / flight	\$ 750K	\$ 750K	\$1 - 5M	\$50K - \$2M per flight
Max altitude:	100+ km	~105 km	~85 km	1,500 km	40km
Avg flight duration:	40 minutes	11 minutes	2.5 hours	20 minutes	days/weeks
Trajectory:	fully customizable	vertical	parabolic	parabolic	limited control
Max payload mass:	30 kg (trade)	~420 kg	450+ kg	450 kg	3,600 kg
Microgravity time:	>2 minutes	>3 minutes	>2 minutes	5 - 15 minutes	N/A
Avg wait time to flight:	<1 month	>6 months	>5 years	>2 years	>1 year

Seeking collaborators with payloads to conduct research, technology development, and STEM education flights on Mk-II!

Mission Opportunities

- Earth observation
- Low/microgravity experiments
- In-situ atmospheric measurements
- Technology development
- National security
- Customized aerodynamic profile flights
- STEM education
- Disaster response and recovery

Come fly with us!

THANK YOU

Khaki Rodway
Spaceplane Sales & Operations
khaki@dawnaerospace.com

C4 - Stellar Exploration: Rocket Testing Operations – Meisberger

PRB Hypergolic Test Site Overview

2/25/25

Ryan Meisberger
ryan.meisberger@stellar-exploration.com

Use or disclosure of information contained in this presentation is subject to restrictions.

What We Do

- Develop, build, test, deliver, and load integrated chemical propulsion systems

Use or disclosure of information contained in this presentation is subject to restrictions.

Where We Began

- Began testing in 2017
- Mobile test infrastructure
 - Pack it in, pack it out

Use or disclosure of information contained in this presentation is subject to restrictions.

Where We Are Now

- High-cadence ambient testing capabilities
- 14 Certified SCAPE Handlers
- Passive and active propellant monitoring
- Shipping containers contain house critical permanent infrastructure

Use or disclosure of information contained in this presentation is subject to restrictions.

Monopropellant Test Capabilities

- Thrust
 - 0.25N-5N
- Capable of testing 24x thrusters per day

Use or disclosure of information contained in this presentation is subject to restrictions.

Bipropellant Test Capabilities

- Thrust
 - 5N (440N in development)
- Capable of testing 8x thrusters per day

Use or disclosure of information contained in this presentation is subject to restrictions.

Additional Test Capabilities

- End to End Qualification Unit Hotfire
- Hydrazine Water Hammer Testing for SLS EUS
- Prototype Monopropellant Catalyst for JPL
- Disassembly of Hypercolic Loading
- SCAPE Handler Training and Certification

Use or disclosure of information contained in this presentation is subject to restrictions.

Questions?

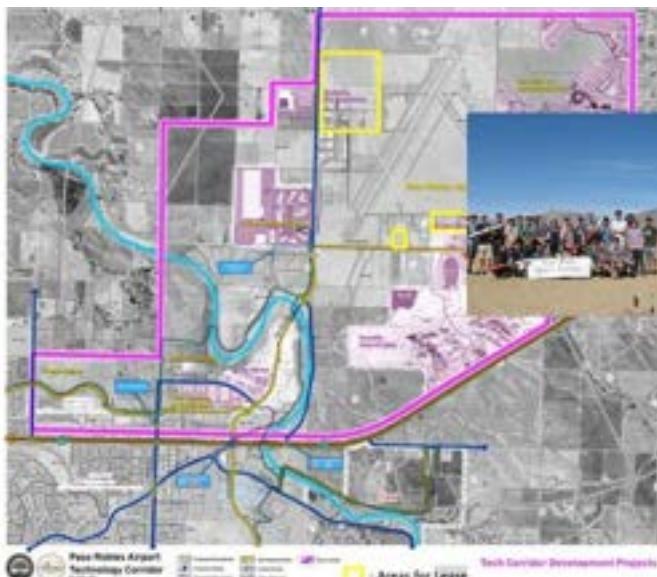
Use or disclosure of information contained in this presentation is subject to restrictions.

C5 - Paso Robles Spaceport Vision, Educational Programs, & Opportunities – Britton, Sloan, & Colvin

Assured Educational Access to Space

Bill Britton

CAL POLY


Future Vision

The Assured Educational Access to Space program outlines a comprehensive and innovative approach to foster educational assured access to space by combining commercial spaceport infrastructure with an education-based integrator and command and control system creating a true access for education to build, design, launch command-and-control (CnC) small satellites in Low Earth Orbit (LEO). The proposed initiative seeks to democratize space access, enhance STEM education, and promote scientific curiosity among students, educators, and the general public.

A small satellite in space, a view of a spaceport runway, a control room with multiple monitors, and a rendering of a satellite in orbit.

Key Components

- **Spaceport Infrastructure:** The initiative proposes the construction of a cutting-edge commercial spaceport facility utilizing horizontal launch capabilities, mission control centers, small satellite integration facilities, and research laboratories.
- **Education-Based Integrator:** An advanced education-based integrator will be developed to design and manage educational space missions.

BENEFITS

Enhanced STEM Education

The Educational Assured Access to Space initiative will revolutionize STEM education by providing students with unique opportunities to engage in space exploration, inspiring the next generation of scientists, engineers, and astronauts.

Democratizing Space Access

By offering access to space to educational institutions, the initiative will democratize space missions and allow students from diverse backgrounds to participate in space-related projects, irrespective of geographic location or financial constraints.

Scientific Advancement

The spaceport's focus on educational missions will contribute to scientific advancement through the gathering of valuable data, conducting experiments, and studying celestial phenomena.

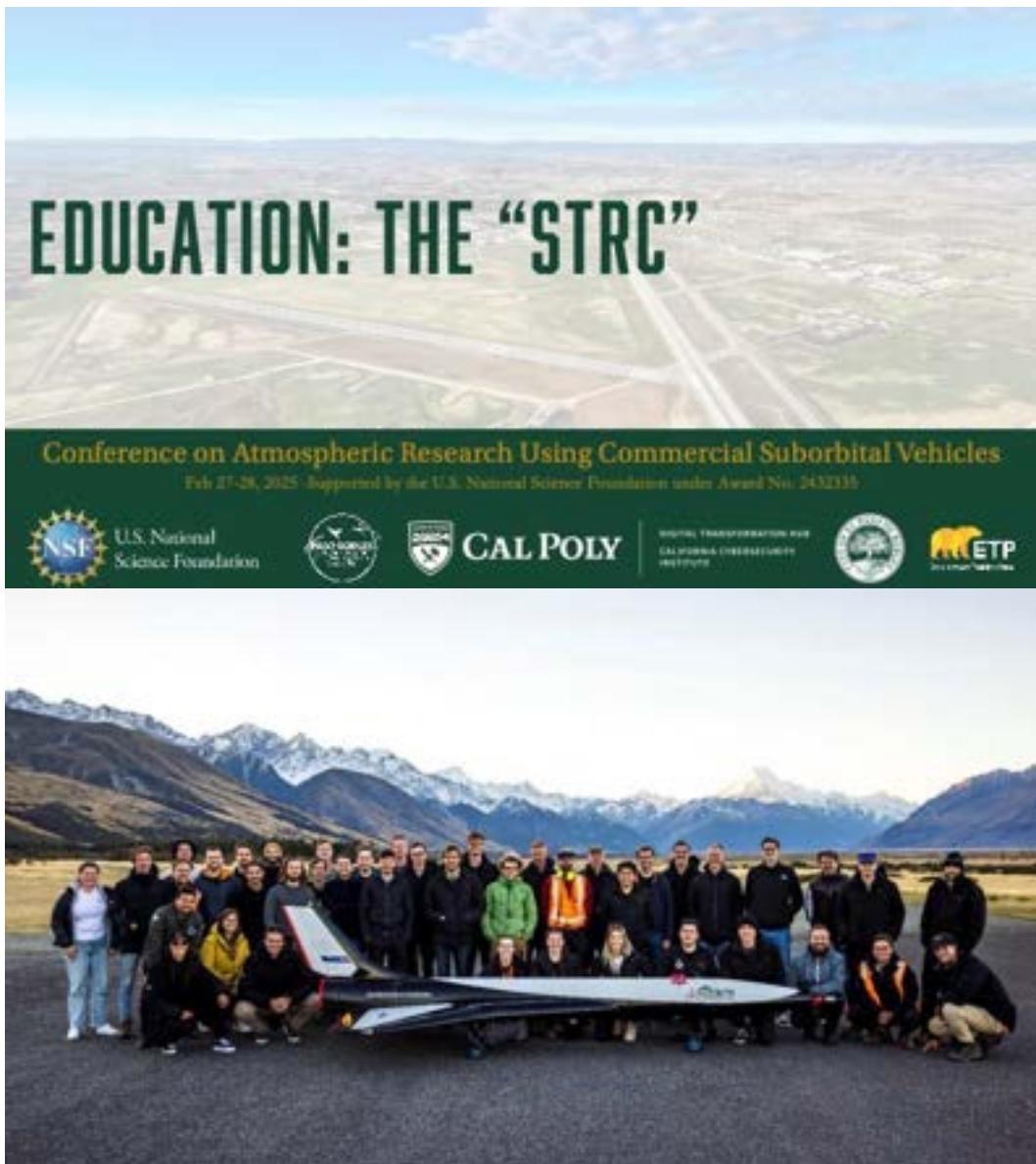
BENEFITS (CONT.)

Public Engagement

The initiative aims to promote space science awareness among the general public by facilitating educational outreach programs, public tours, and interactive exhibits, fostering a deeper appreciation for space exploration.

Funding and Collaboration

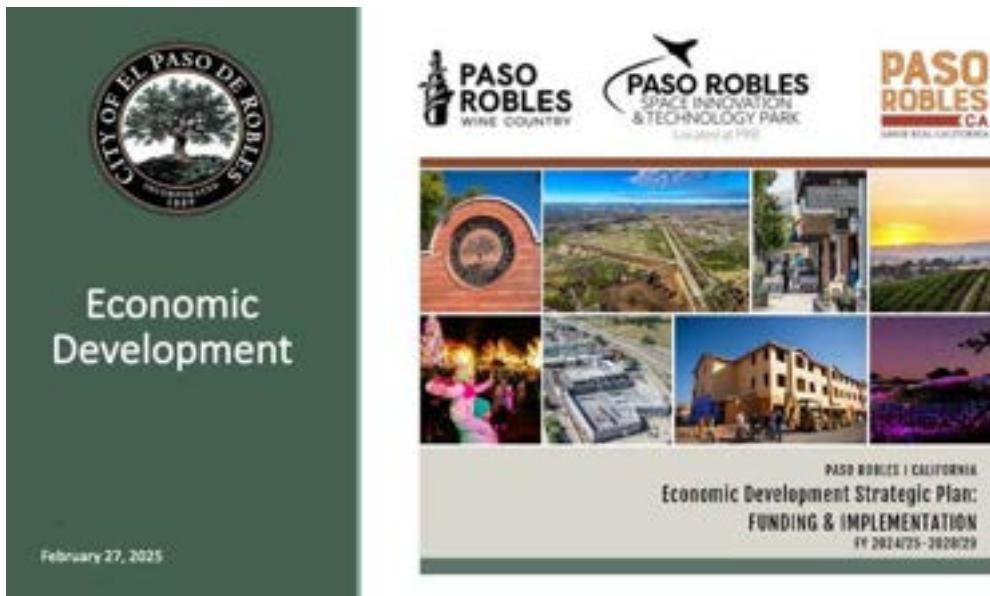
The implementation of the Educational Assured Access to Space initiative requires collaboration between government space agencies, educational institutions, private space companies, and philanthropic organizations. A combination of public and private funding will be sought to support the development and ongoing operations of the spaceport and associated educational programs.


ENTERTAINMENT, ENTERTAINMENT, ENTERTAINMENT

Conclusion

The Educational Assured Access to Space initiative presents an ambitious and transformative vision for leveraging space exploration to enhance education.

By combining spaceport infrastructure with an education-centric approach, the initiative will create a sustainable model for inspiring and educating future generations, driving innovation and scientific progress in the field of space exploration.



Spaceport Training and Research Center

Economic Development Action Plan

Key Initiatives & Implementation Partners

Action Plan*

- 1.0 Civic Innovation Initiative
- 2.0 Business Retention & Expansion Program
- 3.0 Workforce Development Partnership Program
- 4.0 Placemaking & Infrastructure Program
- 5.0 Multifamily Rental Accelerator Program

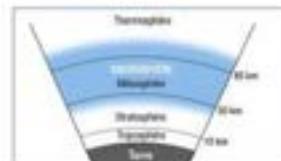
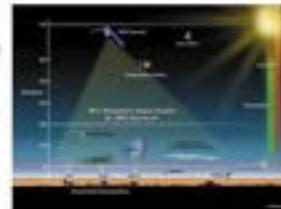
*75+ Specific Action Items in the Action Plan

Economic Development Strategic Plan

“EDSP”

C6 - MLT Research Case Study – Smith

MLT-I Research Case Study – the JHU APL Commercial Suborbital Program



28 February 2025

NSF Conference on Atmospheric Research Using Commercial Suborbital Vehicles

H. Todd Smith
Johns Hopkins Applied Physics Laboratory
h.todd.smith@jhuapl.edu

Overview

- Private companies developing revolutionary suborbital spacecraft with novel scientific and engineering applications enabled by low cost and soft payload return
- Getting involved early to gain experience and lead this emerging field
 - Started working with companies over 10 years ago
 - Helping lead the research & engineering communities
 - Space Applications Research Group (Commercial Spaceflight Federation)
 - NSRC Conference (~every 18 months)
- Goal: to facilitate low cost, iterative development potential
 - Utilize space flight as laboratory
 - Fly as soon and frequently as possible: 10 NASA funded missions (& 2 by other sponsors)
- Establish a regular launch schedule for...
 - Technology and instrument development
 - Atmospheric/ionospheric research
 - Regular testing of internal research and development projects
- Initial focus - integration platform to facilitate low cost, rapid applications (JANUS)

10 March 2025 | 8

Commercial Suborbital Spacecraft...in general

- ❖ Revolutionary suborbital spacecraft – key attributes for APL purposes

- ❖ 1-2 orders of magnitude cheaper than current costs
- ❖ Manned & unmanned, relatively large payload capacity
- ❖ Fully reusable with rapid turn around
- ❖ Access to ~100 km
- ❖ Guaranteed safe return of payload
- ❖ Up to 3 minutes of micro-gravity

- ❖ Large potential for applications beyond space tourism


- ❖ Direct research of the suborbital region
- ❖ Technology development and flight testing
- ❖ Low cost, frequent flight tests -> cost and schedule reductions

Most APL flights have been on Blue Origin and Virgin Galactic – very different designs

- Blue Origin New Shepard

- A Jeff Bezos company – launches out of West Texas
- Crew Capsule (carries up to 6 people) – lands via parachute & retro rocket
- Propulsion Module lands autonomously under power on landing pad

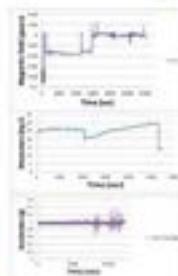
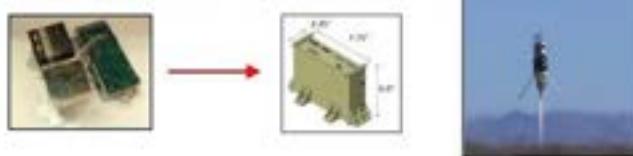
- Virgin Galactic Spaceship 2 (VSS Unity)

- Started by Richard Branson – Launches out of Spaceport America, NM
- White Knight 2 aircraft carries spaceship up to ~50,000 ft
- Spaceship 2 (6 passengers + 2 pilots) lands on a runway

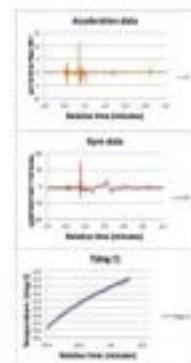
JANUS 2.0: JHU APL Integrated Universal Suborbital Integration Platform

- + Purpose
 - + Develop universal integration platform (eliminate need to develop a new complete payload of each mission)
 - + Power & Data storage
 - + Instrument control
 - + Ambient environment characterization
 - + Standard physical integration to spacecraft
 - + Facilitate research and instrument development
 - + Gain rapid experience with these new spacecraft
- + Current JANUS design
 - + Low cost, iterative design
 - + Completely self-contained and portable (<1.5 kg)
 - + Low voltage power supply and processor boards
 - + Power interfaces: +/-15V, +5V, +3.3V, and isolated +5V
 - + Data interfaces: up to 24 analog channels, up to 32, 3.3V and 2, 5V GPIO, up to 9, 3.3V and 2, 5V UARTs, up to 5 Rx / 3 Tx RS-232 channels
 - + High rate USB 2.0 interface
 - + 3D Accelerometers & gyros, thermal & pressure sensor, magnetometer & GPS

Janus – Roman god of beginnings and transitions



Eight successfully completed flight tests so far

- + 2 Nov, 2016 – Masten Space Systems Xombie launch vehicle
 - Low altitude NASA reduction flight for first JANUS flight
- + 5 Oct, 2016 – Blue Origin New Shepard Spacecraft
 - Low altitude 'escape test' preflight for AOS Sponsor mission
- + 12 Dec, 2017 - Blue Origin New Shepard Spacecraft
 - Operational flight for AOS Sponsor mission (35 experiments)
- + 18 Jul, 2018 - Blue Origin New Shepard Spacecraft
 - 1st NASA funded experiment (high altitude escape test) – Env. char
- + 23 Jan, 2019 - Blue Origin New Shepard Spacecraft
 - 2nd NASA funded experiment (nominal altitude test) – Env. char
- + 22 Feb, 2019 – Virgin Galactic Spaceship 2
 - 3rd NASA funded experiment – Env. char
- + 13 Oct, 2020 – Blue Origin New Shepard Spacecraft
 - 4th NASA funded experiment – JANUS 2.1 (magnetometer & GPS/IMU)
- + 22 May, 2021 – Virgin Galactic Spaceship 2
 - 5th NASA funded experiment – JANUS 2.1 (magnetometer & GPS/IMU)


1st Mission: Flight Opportunities Risk reduction flight

- While awaiting our first operational flight, NASA Flight Opportunities conducted a low altitude Risk Reduction flight on Nov 2nd, 2016.
 - Masten Space Systems Kodiak launch vehicle
 - ~0.5 km altitude, ~1:17 flight duration
- Provided critical initial flight assessment of the JANUS 1.0 prototype system
- Validated the pressure and thermal detection systems, however, Identified the need for accelerometer and magnetometer upgrades
- Facilitated improved design (JANUS 2.0)
 - More compact and durable
 - Improved operational mission probability of success: model for future approach to low cost access to space

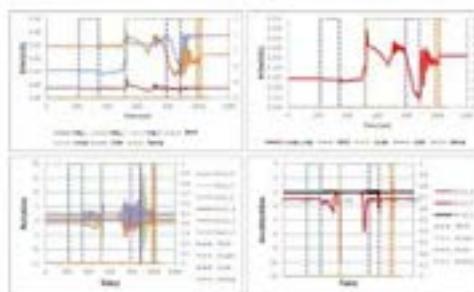
2nd Mission: JANUS 2.0 risk reduction

- Unexpected opportunity to gain flight heritage for JANUS 2.0
- Flight tested the JANUS 2.0 System Blue Origin New Shepard "Escape Test" flight
 - Flight heritage under more extreme conditions
 - Enhancement over a standard APL test program – "extension of the laboratory environment"
 - Excellent opportunity to verify flight operations procedures
- Flight test was extremely successful
 - Flight heritage BEFORE operational flight
 - Key flight operation rehearsal
 - Executed minor adjustments to payload and verified payload was ready for operational flight testing

V-1

3rd Mission: First operational flight test of JANUS

- Non-NASA sponsor
- Conducted first operational flight test of JANUS (2.0) system on the 12 Dec, 2017 Blue Origin New Shepard flight
 - Tested single and double JANUS 2.0 payloads (35 acceleration-based experiments)
 - ~98.3 km altitude
 - 10.06 flight time
- Very successful test flight
 - Both JANUS 2.0 units recovered and operated correctly during entire flight duration
 - Pre-determined triggers executed successfully
 - All sensors operated as expected
- Based on test results, we executed minor modifications to improve the first NASA Flight Opportunities flight test



V-2 (a/b)

4th Mission: JANUS 2.1 (Magnetic Field Experiment)

- Enabled by NASA Flight Opportunities Program
- P6 Mission of Blue Origin New Shepard high altitude escape test flight – 18 July, 2018
- 1st NASA Flight Opportunities funded APL payload
- Characterized the electromagnetic environment inside the spacecraft
- JANUS 2.1 operated successfully
 - Assessed EMI on non-standard flight profile

5th Mission: JANUS 2.1 (Magnetic Field Experiment-nominal profile)

- Funded by NASA Flight Opportunities Program
- P7 Mission of Blue Origin New Shepard nominal test flight – 23 Jan, 2019
- Characterized the electromagnetic environment inside the spacecraft during a nominal flight profile
- JANUS 2.1 operated successfully
 - EMU analyzed during a nominal flight profile – Earth magnetic field measured

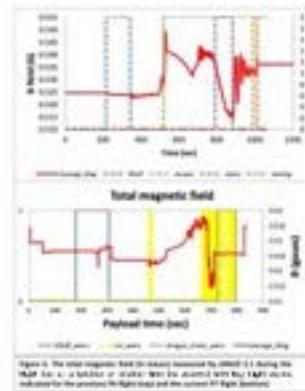
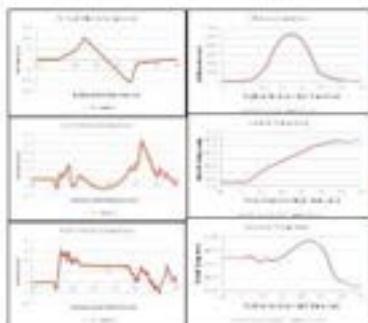


Figure 10: The total magnetic field (in赤道) measured by JANUS 2.1 during the MEAP test flight 2.1. A vertical red line marks the arrival with Blue Origin's F9P rocket. Indicated for the atmosphere (in flight) and the vacuum (F flight domain).

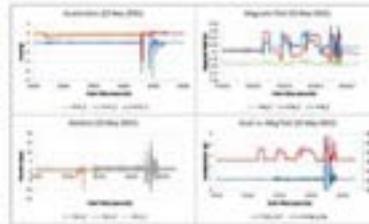
6th Mission: JANUS 2.1 (Magnetic Field Experiment)

- Funded by NASA Flight Opportunities Program
- Virgin Galactic Space Ship 2 test flight – 22 Feb. 2019
- Characterized the electromagnetic environment inside the spacecraft
- JANUS 2.1 operated successfully
 - Our first characterization of EMU on Space Ship 2

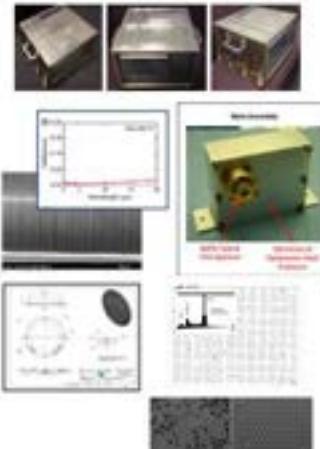


V-3

7th Mission: JANUS 2.1 (GPS experiment)


- ◆ Funded by NASA Flight Opportunities Program
- ◆ Blue Origin New Shepard test flight – 13 October 2020
- ◆ Conduct and validate high accuracy GPS velocity and location observations
- ◆ JANUS 2.1 operated successfully
 - ◆ Established the first direct GPS antenna connection with spacecraft

8th Mission: JANUS 2.1 (Magnetic Field Experiment)



- ◆ Funded by NASA Flight Opportunities Program
- ◆ 2nd flight test on the Virgin Galactic Spaceship 2
 - ◆ 22 May, 2021 (12 Dec 2020) at Spaceport America, NM.
 - ◆ Refine vehicle interfaces
 - ◆ Evaluate the payload Electromagnetic (A-flight) environment
- ◆ Characterized the electromagnetic environment inside the spacecraft
- ◆ Original flight was aborted on February 11th 2021
 - ◆ Our payload remained onboard the spacecraft awaiting the next flight
- ◆ Re-flight on 22 May, 2021 (12 Dec 2020) at Spaceport America, NM
 - ◆ Refine vehicle interfaces
 - ◆ Evaluate the payload Electromagnetic (A-flight) environment

Next round of JANUS internal flights (NASA FO funded)

- ◆ JANUS 2.1 (+ magnetometer & GPS/IMU)
 - ◆ Next Blue Origin New Shepard launch
 - ◆ Testing ability to conduct total electron content (TEC) observations using dual frequency GNSS observations from a commercial suborbital flight vehicle

- ◆ JANUS 2.1a
 - ◆ Vertically Aligned Carbon Nanotubes (vACNT) Flight Technology Demonstration for radiometers
 - ◆ Extremely efficient absorbing material (blackest material currently known)

- ◆ JANUS 2.1b
 - ◆ Graphene foils Flight Technology Demonstration
 - ◆ Very strong structures – option to greatly improve particle detection efficiencies while decreasing mass

10 March 2025 | 16

APL will soon fly externally (NASA FO funded also)

- ◆ JANUS 3.0
 - ◆ 1st external environment access (Blue Origin New Shepard launch)
 - ◆ Will enable much more expanded research and technology demonstration
 - ◆ Location on top of the Propulsion Module

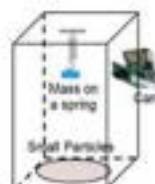
- ◆ JANUS 3.0a
 - ◆ Applying Europa Clipper technology
 - ◆ Plasma Instrument for Magnetic Sounding (PIMS)
 - ◆ Charged particle detection at suborbital altitudes on commercial suborbital flights (finally!)
 - ◆ Will focus on negative ion observations on this flight (lead to observations of Saturn's moon Titan)

- ◆ JANUS 3.0b
 - ◆ Collaboration with Cornell University
 - ◆ ChipSat dispersion and recovery
 - ◆ Very small satellites – 2-4 gm
 - ◆ Enabling technology for novel applications
 - ◆ 1st deployable attempt

10 March 2025 | 16

9th Mission ☀

- First external API test
- Just before max Q, propulsion module experienced an anomaly
- Crew Capsule did just what it was supposed to do – shut down the PM and ignited escape motor
 - CC landed safely with payloads (all would have survived)
 - Unfortunately, PM (and JANUS 2.0) was lost.
- Currently building new, improved JANUS and hope to conduct re-flight later this year



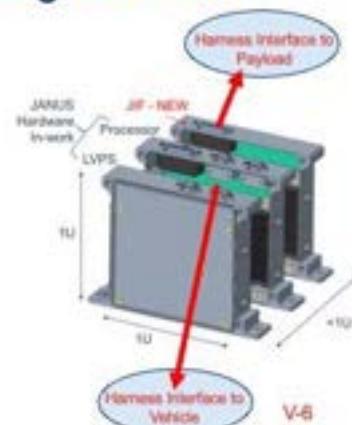
V-5 (-6:40)

Something good still happened on our 9th mission

- APL/Blue Origin team mentoring an elementary school project to conduct a scientific experiment on the Blue Origin New Shepard rocket
- Funded by the AGU Celebrate100 Grant program
- Engaging the entire PS 185 (Brooklyn, NY) Elementary School
- Intended to provide unique and exciting education opportunity that will hopefully inspire many students to pursue STEM career fields
- Focus on scientific method and engineering design process
- Students were very excited/motivated (V-7)
- Students ideas were very interesting
 - Selected experiment - "Mass on a spring with fine grain particles"
 - Students will predict and observe how the length of a spring will change (& how the small particles move) under differing gravitational environments
- Originally flew on our 9th mission
 - Payload survived escape motor firing
 - Re-flown (successfully in Dec. 2023) (V-8)

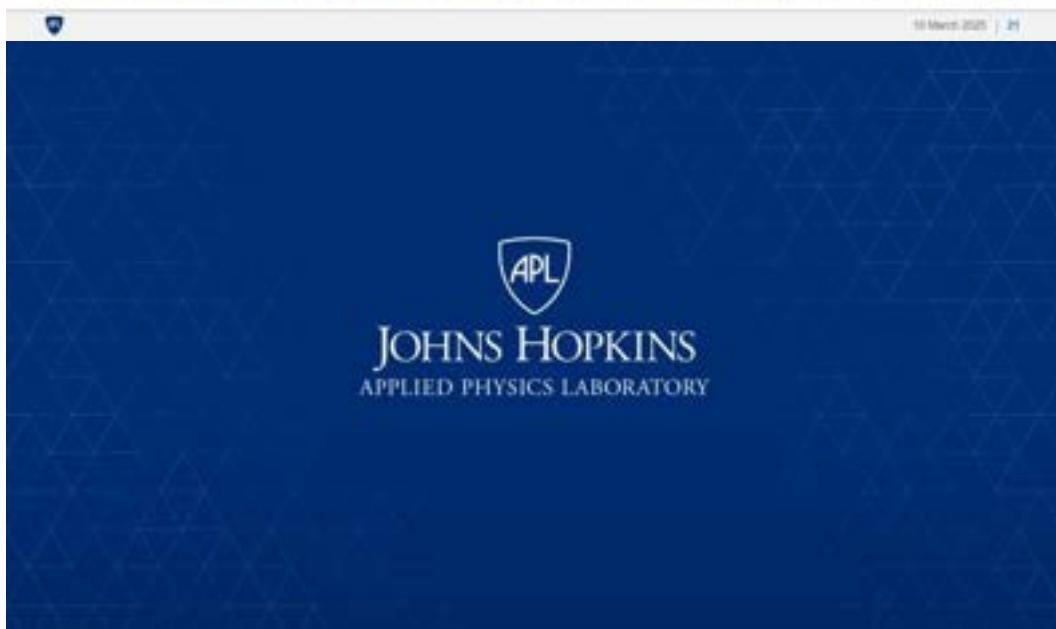
JANUS-UPI: Next Step for Commercial Suborbital and Beyond

- Proposed interface system to accommodate ALL NASA Flight Opportunities supported commercial vehicles and hosted payloads (+ CubeSats, lunar & other SMD missions)
- JANUS-UPI is an evolution of existing JANUS design used on Blue Origin and Virgin Galactic payload flights
- JANUS-UPI will provide all Minimum (and Example Additional) Interface Capabilities including:
 - Electrical/physical interface
 - Distribute, switch, convert and regulate power with grounding
 - Modular, flexible, low-cost and rapid payload accommodation
 - Pass commands, acknowledgements, vehicle telemetry & onboard data storage (possible communication system)
 - Allow easy interface access to payload
 - Support early payload development before vehicle is identified

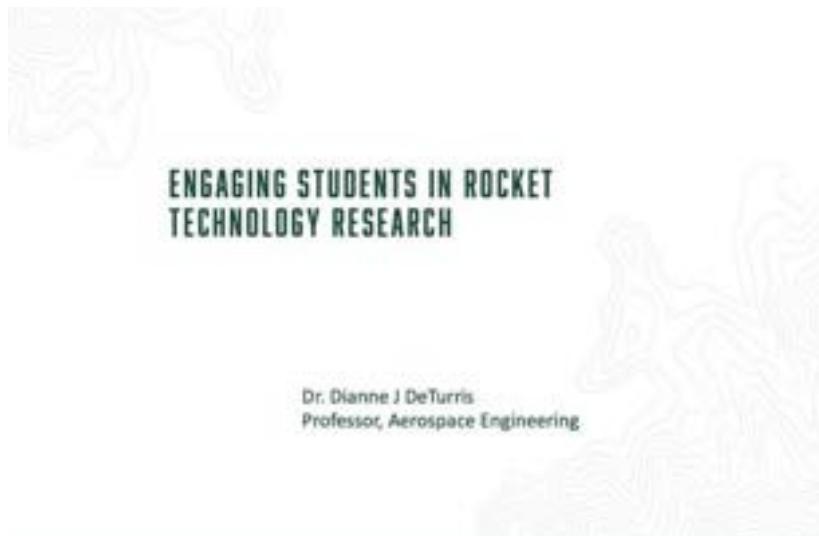


Leveraging
existing
interface
experience

To develop a truly
universal payload
interface system


Our proposed JANUS-UPI system will expand our current JANUS design to accommodate all targeted vehicles

- Will include all JANUS 2.0 (& JANUS 3.0 upgrade) capabilities with improvements
- Size: <1U; Weight: <1.0kg; Power: <500 mA
- Based on a three electronic board configuration: processor, low voltage power supply and payload interface
- Will provide spacecraft power and data interface between vehicle and payload:
 - Physical interface directly to JANUS-UPI (or baseplate as with previous JANUS flight tests)
- Hardened to survive all environments ranging from suborbital to lunar
- S/C Power and Data Interfaces
- Goals of the proposed effort – a flight ready universal interface unit:
 - Development of required electronic boards that will survive all relevant environments with modular, scalable and low cost design
 - Development of robust user-friendly operational/PQA software
 - Development of common spacecraft and payload interfaces
 - Provide payloads with agnostic interface requirements that allow for payload development prior to vehicle identification

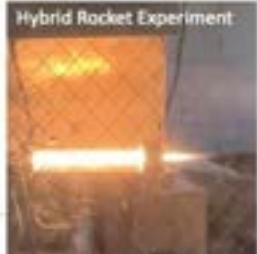


Summary, next steps and future strategy

- Current APL program has been successful
 - Positioned to utilize vehicles as they become available
 - Creating effective relationships with commercial providers
 - Program expanding (2 PIs and 10 funded missions) – more APL PI's starting to propose
- JANUS interface system
 - Provides standardized physical & electrical interface
 - Processor/FPGA, data storage, LVPS, environmental monitoring (comms?)
 - Eliminates need to develop entire payload (cost/schedule reduction)
 - Low cost IRAD flight testing
- Leveraging current successes to expand current commercial vehicle applications
 - All commercial suborbital platforms/vehicles
 - Orbital and lunar/cislunar

C7 - Engaging Students in Space Technology Research – DeTurris

ENGAGING STUDENTS IN ROCKET TECHNOLOGY RESEARCH


Dr. Dianne J DeTurris
Professor, Aerospace Engineering

February 27, 2025
NSF Aeronomy Researchers Conference

ROCKET TECHNOLOGY PROJECTS IN AEROSPACE ENGINEERING

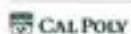
- ⊖ Aerospace Propulsion Curriculum
 - Nozzle Testing in Supersonic Wind Tunnel
 - Liquid, Hybrid, and Solid Rocket Ground Test
- ⊕ Undergraduate Student Rocket Projects
 - Hybrid and Liquid Rocket Test Stand Development
 - Solid, Hybrid, and Liquid Rocket Ground and Flight Test
- ⊕ Graduate Student Research
 - 3D Printed Rocket Design
 - Air Augmented Rocket Engine
 - Hybrid Rocket Scaling Parameters

Hybrid Rocket Experiment

SOLID, HYBRID, AND LIQUID ROCKET REQUIRED LAB COURSE EXPERIMENTS

Aerospace Propulsion Curriculum

Low Thrust, Low Energy Experiments


- Static fire **solid** motor (A-G) to measure
 - Thrust
 - Propellant flow rate
- Static fire **hybrid** motor to measure
 - Thrust
 - Propellant flow rate
 - Combustion instability
- Static fire **liquid** rocket engine to measure
 - Thrust
 - Propellant flow rate
 - Plume characteristics

Required:
10 Fingers
10 Toes

UNDERGRADUATE STUDENT ROCKET PROJECTS

University Rocketry Competitions

HYBRID ROCKET TESTS

Undergraduate Student Projects

- Nitrous Oxide and HTPB (tire rubber)
- Ground Test 100-500 lbs thrust
- Student designed and built combustion chamber and nozzle
- Student built test equipment
- Lots of safety documents

CAL POLY

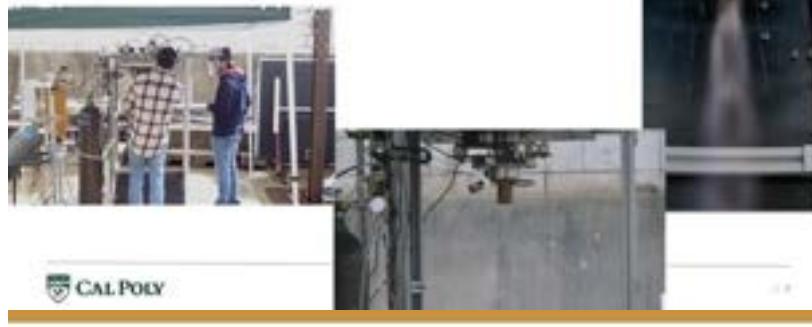
STUDENT BUILT TEST EQUIPMENT

 CAL POLY

FLIGHT TESTING HYBRID ROCKETS

Nitrous Oxide and HTPB

- After Successful Ground Test, Flight Vehicle was Designed
 - Student mixed HTPB propellant grain
 - Student designed combustor and nozzle
 - Student built rocket
- Fly at Friends of Amateur Rocketry in Mojave



 CAL POLY

GROUND TESTING LIQUID ROCKETS

Developed test stands for 10 lbs and 500 lbs thrust

- Ethanol and oxygen liquid rocket engine
- Instrumentation for thrust, mass flows, pressures and temperatures
- Create knowledge transfer structure

 CAL POLY

COLLEGIATE PROPULSIVE LANDER CHALLENGE

Awarding Five Different Prizes to University Rocketry Teams

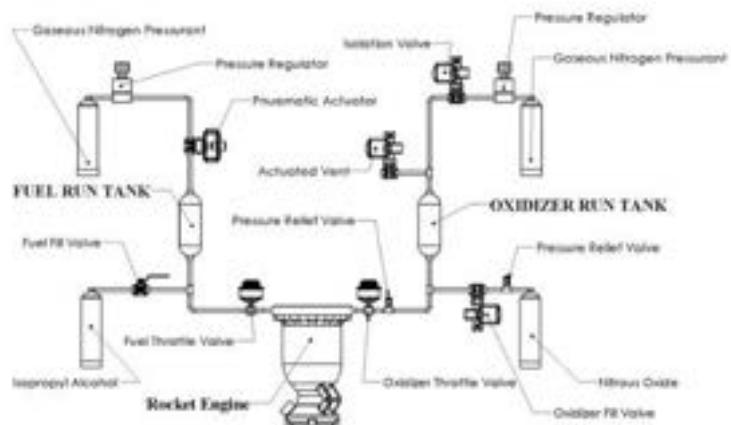
- Thrust Vector Control
500 lbs thrust, 10 seconds, vector of at least 7 degrees in all directions
- Throttleable Hotfire
500 lbs thrust for 4 seconds, throttle to 40% of that nominal thrust, hold for 2 seconds, return to nominal thrust
- The Bess Touchdown Award
Successful landing from height of 10 meters, with a payload
- Tethered Hover
Controlled Hover for 10 seconds with 30 lbs payload
- Hop
Controllably ascend vehicle to 50 m above ground, then demonstrate successful landing within 10 m diameter circle

 CAL POLY

COLLEGIATE PROPULSIVE LANDER CHALLENGE

Cal Poly Has Completed Two of the Five Challenges

- **Thrust Vector Control**
500 lbs thrust, 10 seconds, vector of at least 7 degrees in all directions
- **Throttleable Hotfire**
500 lbs thrust for 4 seconds, throttle to 40% of that nominal thrust, hold for 2 seconds, return to nominal thrust
- **The Best Touchdown Award**
Successful landing from height of 10 meters, with a payload
- **Tethered Hover**
Controlled Hover for 10 seconds with 30 lbs payload
- **Hop**
Controllably ascend vehicle to 50 m above ground, then demonstrate successful landing within 10 m diameter circle


PROPULSIVE LANDER CHALLENGE TEST UP

Isopropyl Alcohol and Nitrous Oxide Liquid Rocket Engine

- Feed system sized for 1000 lbs thrust
- Hot fire duration sized for 20 seconds
- Unlike doublet impinging injectors
- Ablative phenolic combustor and nozzle
- Custom control system includes real time monitoring of pressure, temperature, and thrust

ENGINE SYSTEM DIAGRAM

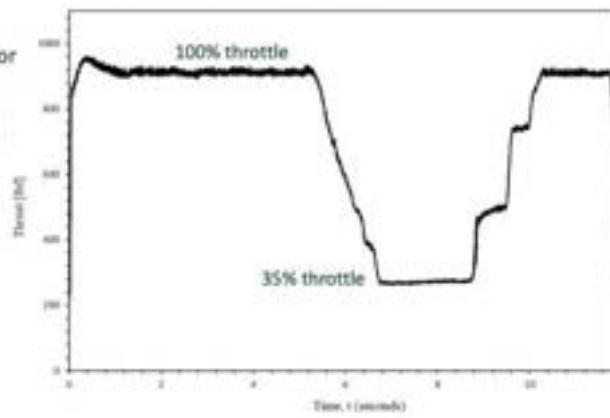
CAL POLY

Fall 2023

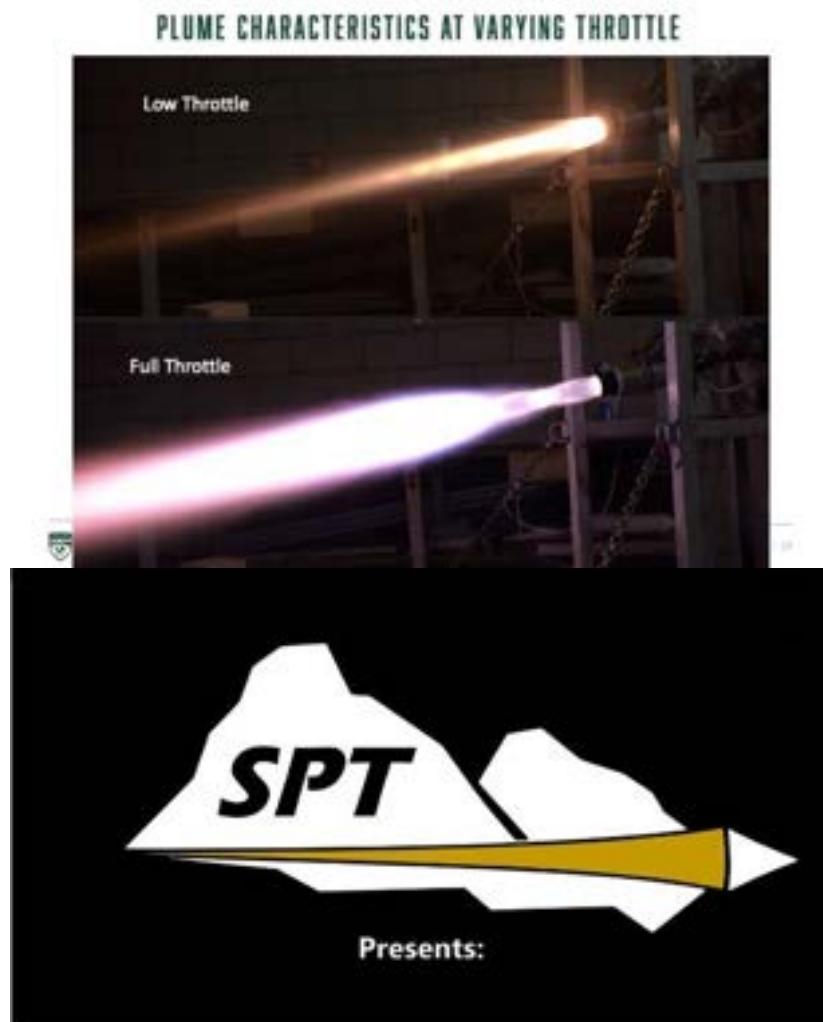
THRUST VECTOR CONTROL

- 500 lbs thrust
- 10 seconds
- vector of at least 7 degrees in all directions

1



 CAL POLY


Winter 2024

THROTTLEABLE HOTFIRE

- 500 lbs thrust for 4 sec
- throttle to 40% of that nominal thrust
- hold for 2 sec
- return to nominal thrust

 CAL POLY

COLLEGIATE PROPULSIVE LANDER CHALLENGE

Up Next is the Hop Challenge

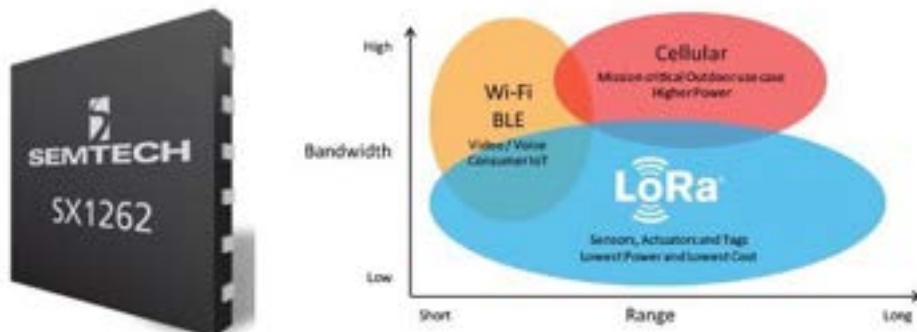
- Thrust Vector Control
500 lbs thrust, 10 seconds, vector of at least 7 degrees in all directions
- Throttleable Hotfire
500 lbs thrust for 4 seconds, throttle to 40% of that nominal thrust, hold for 2 seconds, return to nominal thrust
- The Bess Touchdown Award
Successful landing from height of 10 meters, with a payload
- Tethered Hover
Controlled Hover for 10 seconds with 30 lbs payload
- **Hop**
Controllably ascend vehicle to 50 m above ground, then demonstrate successful landing within 10 m diameter circle

FUTURE STATIC FIRE TESTING

Rockets Producing More Than 500 lbs Thrust

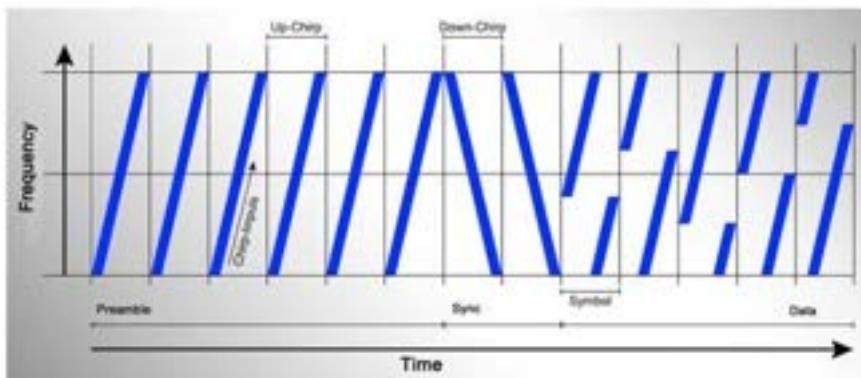
- Create a large test stand for liquid rocket testing
 - Different engine configurations
 - Different materials
 - Different manufacturing techniques
 - Different control configurations
- Create a large test stand for hybrid rocket testing
- Develop infrastructure for cryogenic propellants

C8 - Space IOT Research Case Study – Derickson


Wireless Communication using LoRa modulation and the Cluster Duck Protocol; Ground-to-Space links in the License-Free 915 MHz ISM Frequency Band

Dennis Derickson ddericks@calpoly.edu
Steve Dunton sdunton@calpoly.edu
Cameron McClure-Coleman (cjmccclur@calpoly.edu)
Jack Ryan jryan39@calpoly.edu
Kevin Nottberg knottber@calpoly.edu
Sammy Brunton sbrunton@calpoly.edu
Bryan Knouse bryan@owlintegrations.com

Presentation Outline


- What is the LoRa Wireless technology created by SEMTEC Inc?
- Partnership between OWL Integrations and Cal Poly
- Application to Today's Conference
 - Cal Poly Developed LoRa/CDP Hardware and Software
 - Cube Sat with LoRa Link Project
 - Cal Poly Space Systems LoRa Link Project
 - Cal Poly/Lacuna Space LoRa Link Project
- Summary and Conclusions

LoRa as a low data rate, long distance com link.

<https://www.semtech.com/lora>

LoRa (Long Range) Chirped -Waveform Modulation Technique pioneered by SEMTEC

LoRa Receiver Sensitivity at -135 dBm. LoRa TX power at 20 dBm.

700 km LEO Link to 700 km (145 dB path loss)

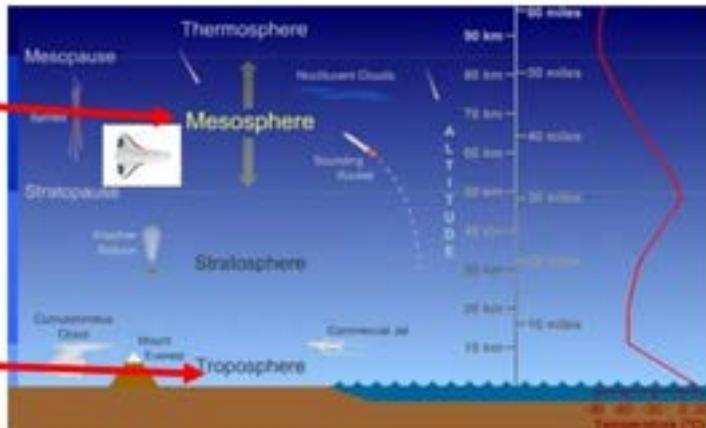
Link Loss capability of 150 dB with Low gain antennas

70 km Mesosphere Link to (125 dB path loss)

***OWL Integrations / Cal Poly
Collaboration***

Start-up Technology Company Focused on Making Connections

CAL POLY/OWL HARDWARE/SOFTWARE CREATIONS


Link Conclusion from Lora/CDP Link Field Testing:

1. Mesosphere Links can be completed with Low-Gain Antennas for Both ground station and space vehicle antennas.
2. Low Earth Orbit Links will need High Gain antennas to complete the link.

Longer Term Goal for Project –Mesosphere Research

- Sub-orbital Mission into the Mesosphere in 202X. Develop a Sensor Payload for targeted Research.
- Use LoRa for the communications Link.
- Need to develop partnerships.

We will have a ground Station here receiving the LoRa data from the sensor Suite.

<https://scied.ucar.edu/learning-zone/atmosphere/mesosphere>

Ducks in Space:
Cal Poly's "Learn By Doing"
Approach to Mature
"Duck" Radios for Future
Space Flight & Possible
Mesosphere Science

High altitude (31,000 feet) balloon test of Duck Radio, June 2024. In Nov. '24 we did testing in a stratospheric environment.

CAL POLY
www.calpoly.edu

OWL
www.project-owl.com

A F W E R X
afwerx.com

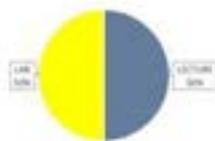
Bottom Line Up Front (BLUF)

- Cal Poly has a multi-year collaboration with start-up *OWL Integrations*
- OWL makes low-cost, low data rate, long range (LoRa) radios for terrestrial, airborne and (soon) spaceborne applications
- OWL radios (called "Ducks") also have low SWAP
 - Size, Weight and Power
- OWL's Duck radios may provide a convenient communications module for platforms studying the mesosphere

OWL

Cal Poly Custom Electronics
And Sensor Designs!

**California
Polytechnic
State University**


A Number of Reasons Why

LEARN BY DOING IS DIFFERENT

CAL POLY

- Cal Poly is a top-ranked public university in San Luis Obispo, California (USA)
- We implement "Learn By Doing" as a deliberate process where students acquire knowledge and skills through active engagement in research and development projects projects:
 - Examples
 - Cal Poly co-created the Cubesat satellite standard
 - Our student-led space program "PolySat" has been launching since 2006
- We prioritize teaching and use research to support student learning

Research Institute in Need of Partners (Funding)

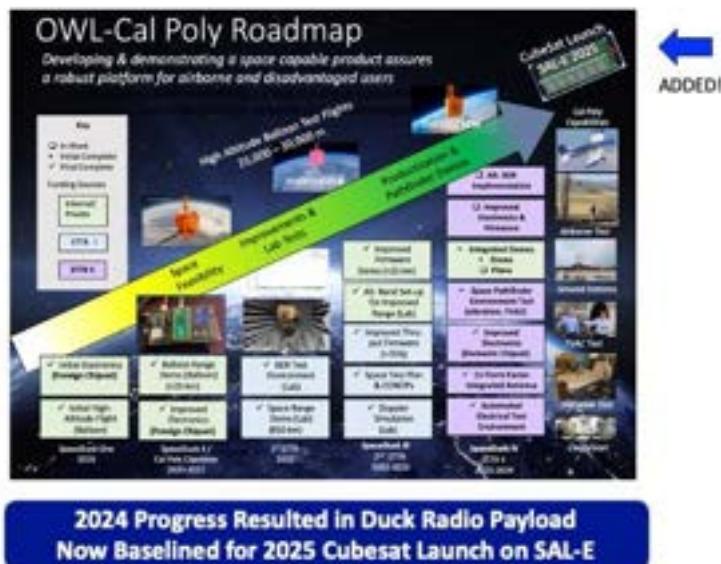
OWL/Cal Poly Collaboration Activities/Results

Cal Poly Partners with Startup "OWL" to Win \$1M+ Research Grant

Prime Contract Awarded 8/25/2021 SOW

Spring 2024/25 Senior Projects

- Monitoring and Training of Water Area Networks: Radio Systems
- Electric Aircraft: Airframe/Space and Financial Applications
- Network, security, and data management (COTS integration, etc.)
- Exploration of the Potential of Increased Capabilities of Microsatellite Networks
- Software Defined Radio for Application for SMC Integration, etc.


• 30+ undergraduate and graduate students
 • 18 paid summer interns
 • 5 masters thesis projects
 • Multiple senior projects
 • 4 faculty (AERO, CSC, EE)

Cal Poly Electronics: Micro, Milli, and RF Modules Improved Electronics Successfully Designed, Built & Tested

Micro-Satellite (Duck) as part of CubeSat Mission for InSAR in 2026. New ground Station Capability

First Desktop Electronics & Networks Successfully Demonstrated in Airborne Environment

Electronics & Networks Successfully Demonstrated in Simulated Space Environment

Summary – New Electronics and Space –Oriented Missions

- Cal Poly has a multi-year collaboration with start-up **OWL Integrations**
- OWL makes low-cost, low data rate, long range (LoRa) radios for terrestrial, airborne and (soon) spaceborne applications
- OWL radios (called "Ducks") also have low SWAP
 - Size, Weight and Power
- OWL's Duck radios may provide a convenient communications module for platforms studying the mesosphere

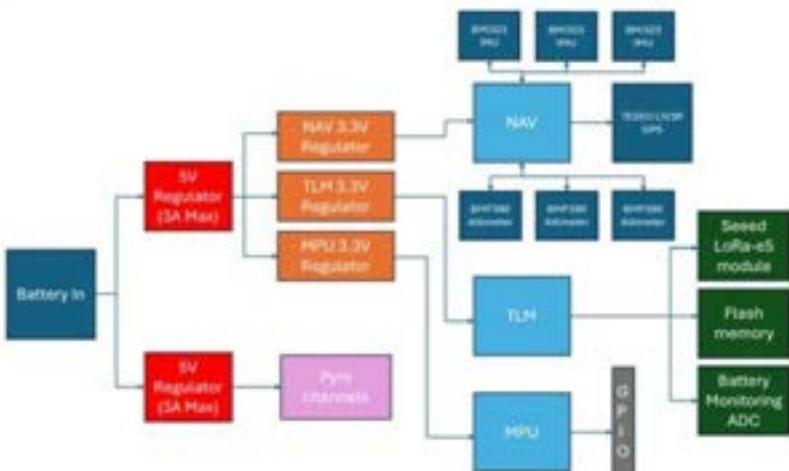
We can design custom electronics
and sensors for your needs too!

Cal Poly Space Systems (CPSS); Custom LoRa-based Sensor Suite Projects

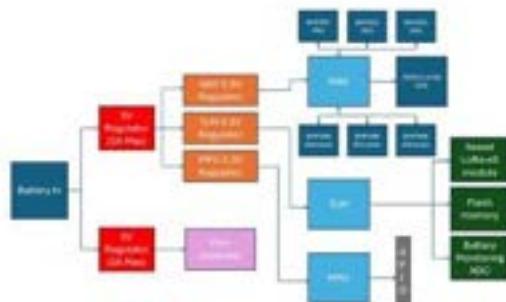
Club Biography

- Club is in existence since 1983
- Currently has 70 membership (many different majors)
- Meets twice weekly; Always Design, Building, Testing and Learning.
- Initially the club was formed as a group in the 1970s working on a "NASA Getaway Special" with the Space-Shuttle Program.

Key Coms Module using LoRa Link: Telemetry and Operations Manager (TOM)


- General-purpose flight computer for wide variety of future CPSS missions
- Will be running on both CPSS projects launching this year
- Main objectives/advantages:
 - Easy implementation
 - Cost-effectiveness
 - Modularity

TOM Artwork Fall 2024


Block Diagram of the Sensor Suite:

Telemetry and Operations Manager (TOM) Electronics

Features: Telemetry and Operations Manager (TOM) Electronics

- On-board sensors:
 - u-blox Neo-M8 GPS
 - 3 BMP390 barometric altimeters
 - 3 BMI323 IMU's
- Telemetry broadcasted to ground station using Wio-e5 LoRa module
 - Embedded SemTech SX1262 LoRa transceiver and STM32WLE5JC
- STM32F7 microcontroller for other control system/mission-specific needs

Future work (TOM Board)

Let's collaborate on future Projects...

- TOM will support avionics needs of future CPSS projects while allowing for further research and development
- 2024-2025:
 - Refine hardware and software packages on TOM to allow copy-and-paste solution
 - Work with OWL integrations to implement Cluster Duck Protocol in LoRa packets
- 2025-2026:
 - Develop TOM 2.0 with higher altitude capabilities for support of mesosphere research

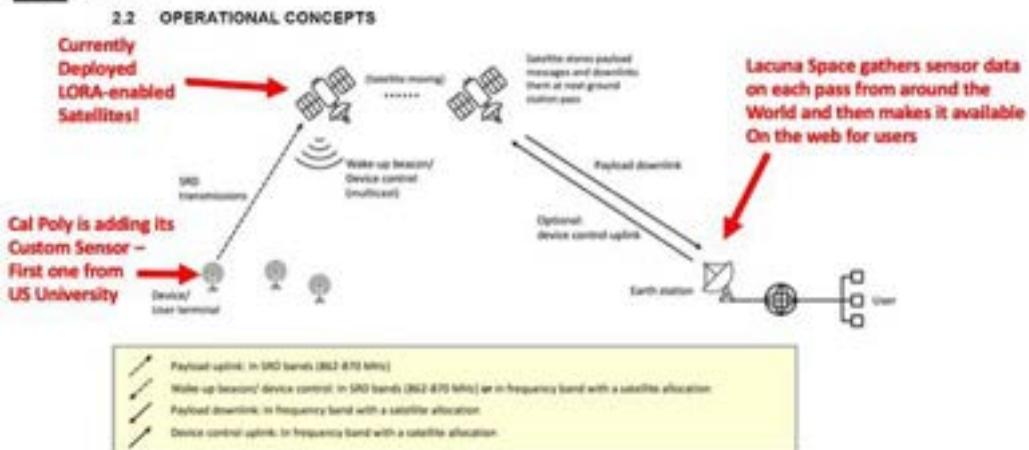


Fig. X: First assembled version of TOM

CPSS Club Time-Lines and Milestones

Lacuna Space/Cal Poly LoRa Low Earth Orbit Project

Lacuna Space/Cal Poly LoRa Low Earth Orbit Project

Lacuna Space LoRa ground station module
Model 300915 (915 MHz for North America)

Many different kinds of sensor can be used to link
To the Lacuna Space LoRa Link based satellite system

Summary

⋮

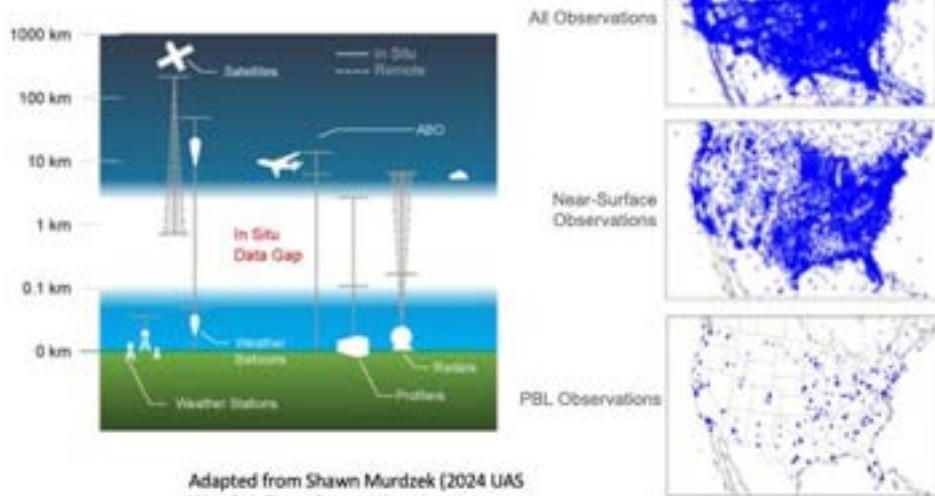
- 1. LoRa/CDP 915 MHz Communication Links are Versatile, License-Free and capable of Mesosphere and LEO paths.**
- 2. Cal Poly / OWL Integrations partnership has developed new custom LoRa/CDP Link hardware/software and associated expertise.**
- 3. Would like to leverage Cal Poly/OWL integration solutions to solve Space-Based Communication Applications – **HOW CAN WE HELP?****

C9 - Local Community STEM Showcase & Interest – Johnston, Acevedo, Dart, & Williams

Hello my name is Anthony Williams. I am a senior at PRHS and lead our school's high altitude rocket project in my engineering class. STEM has been a center part of my life ever since my Grandpa taught me how to swing a hammer. I have always dreamed of being an engineer and physicist, which has pushed me to take advanced level science and engineering courses throughout my high school career.

Hello, my name is Grant Acevedo. I am a junior at Paso Robles High School and president of the Aviation and Aerospace Club. I am a student at Air Paso, which is our local flight school at Paso Robles Municipal Airport and I am working towards earning my private pilot certificate. Since I was young, aviation and aerospace have been a huge part of my life and an inspiring source of ambition for me to push my limits, learn, new things, and redefine what is possible for students in America today.

Hello, I am Kyle Dart. I am a senior at Paso Robles High School. I am involved in the engineering program, automotive program, and SkillsUSA at the high school. I am also involved in the Cozita A&P program. I have been connected with Paso Robles Airport throughout my youth because of my dad. I have been interested in STEM my whole life and want to continue with engineering for my future.


C10 - From the Ground Up to Middle Out: Drones & Balloons for Assistive Suborbital Observations – Jacob

Converging Interests

The Problem: In-Situ Data Gap in PBL

Mars Aircraft High Altitude Tests

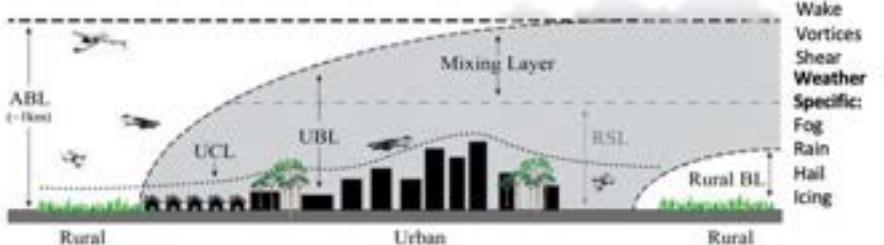
NASA LaRC

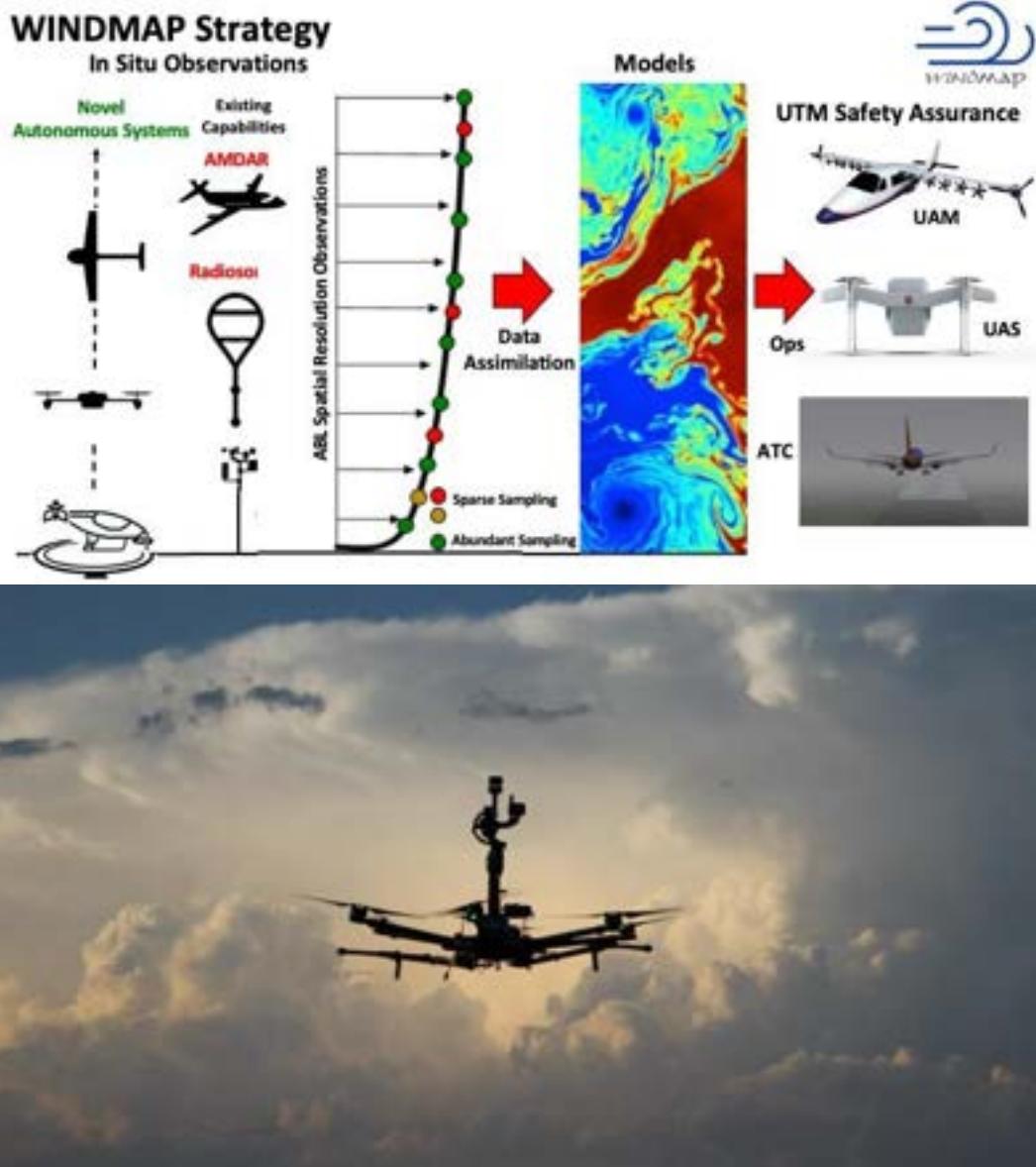
OSU and UK

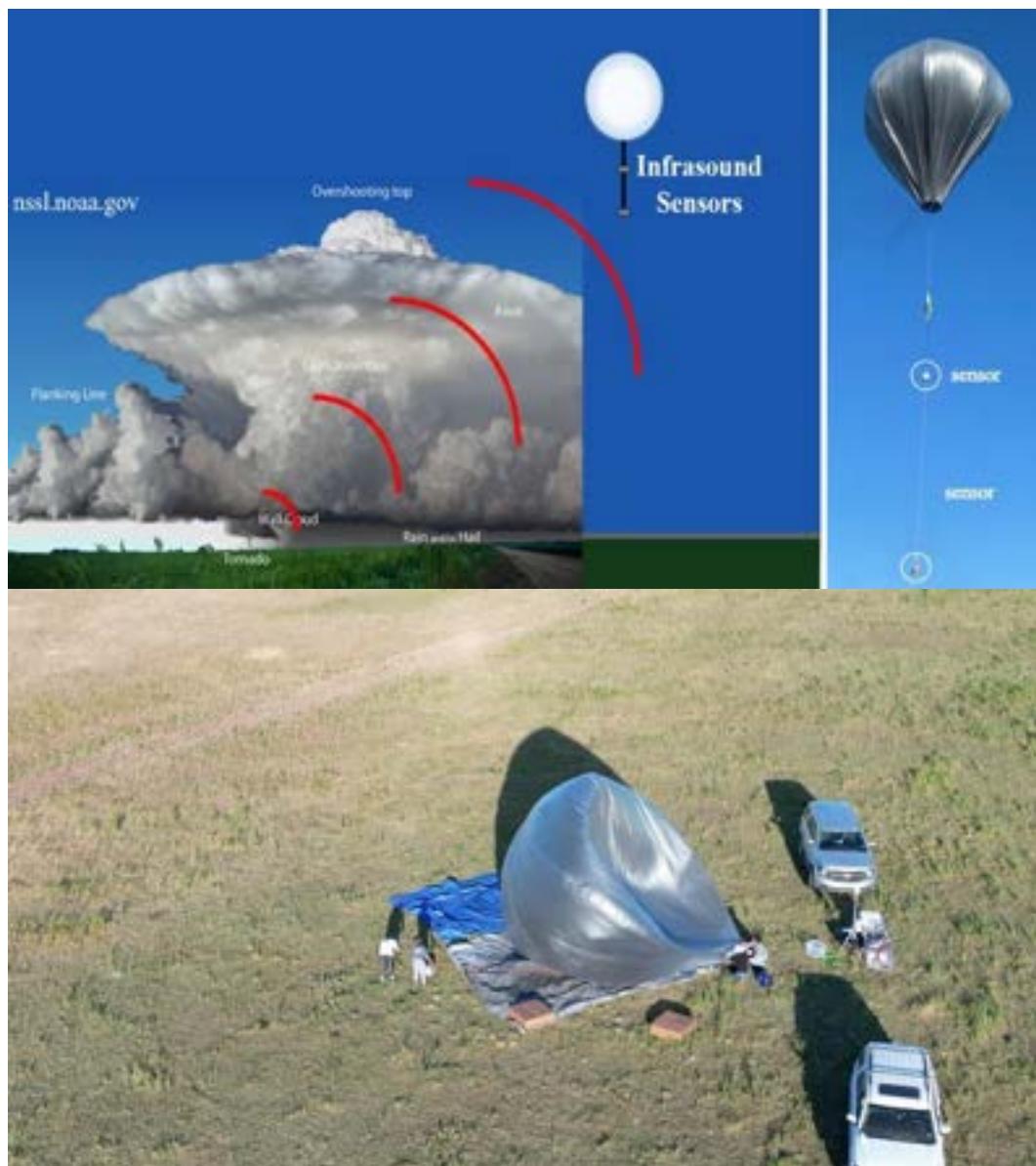
CLOUD-MAP
Collaboration Leading
Operation UAS
Development for
Meteorology and
Atmospheric Physics

Small Unmanned Aircraft
for Atmospheric Boundary
Layer Research

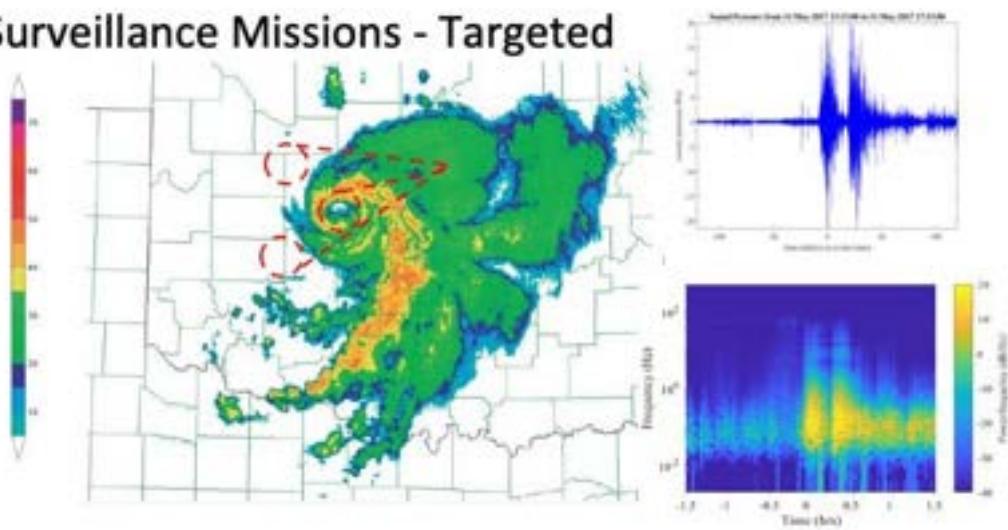
Supported in part by the National Science Foundation
FAIRU, Award #12329070

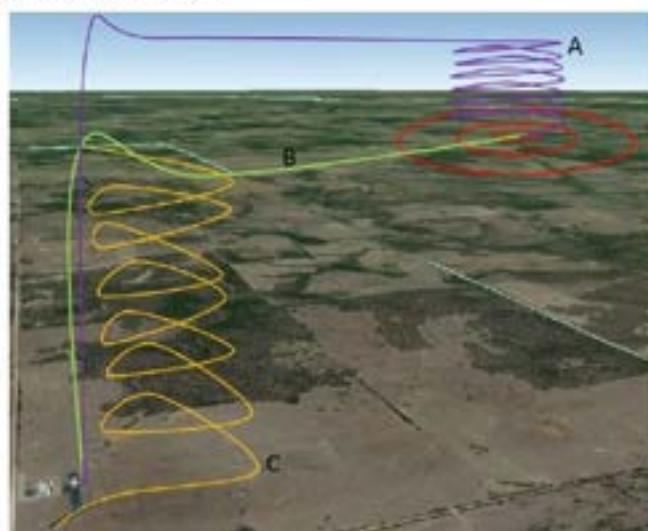

AAM Needs and Benefits



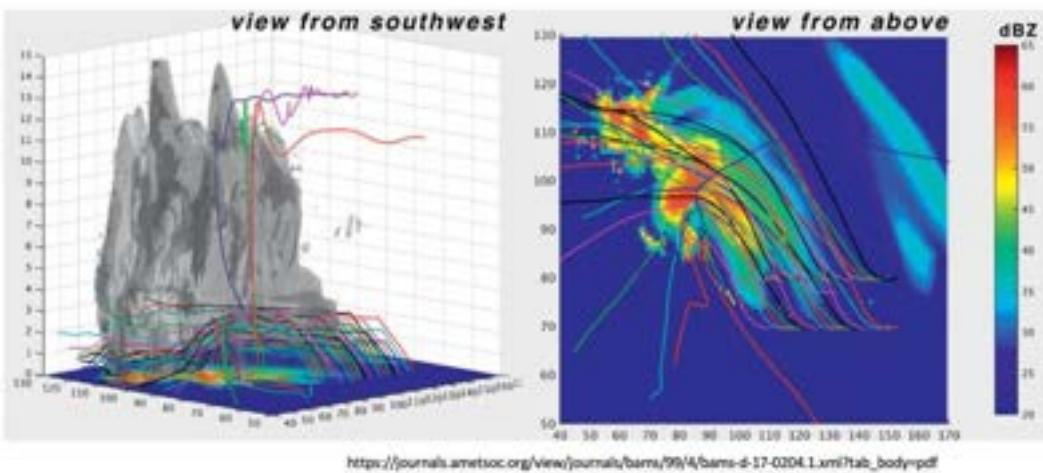

Needs of
AAM for
Enhanced
Weather
Information

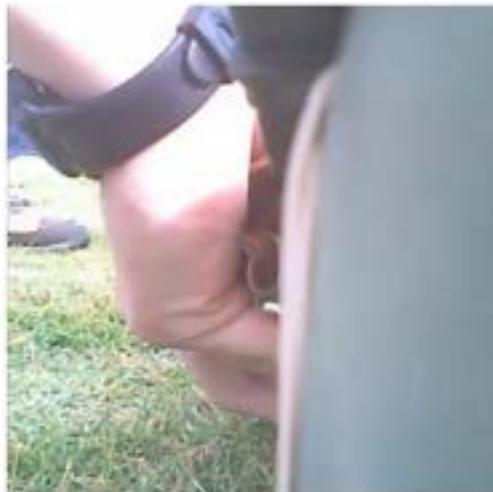
Benefits in
Providing
Weather
Observations

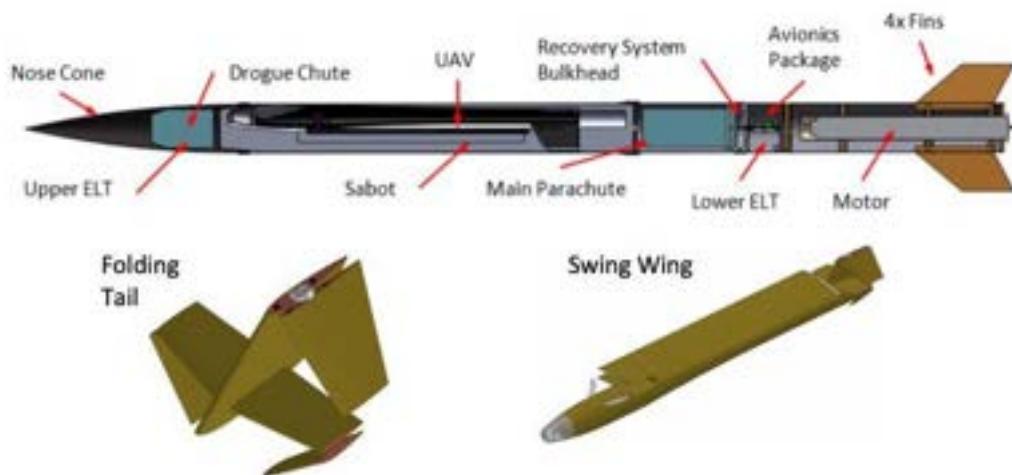




Surveillance Missions - Targeted



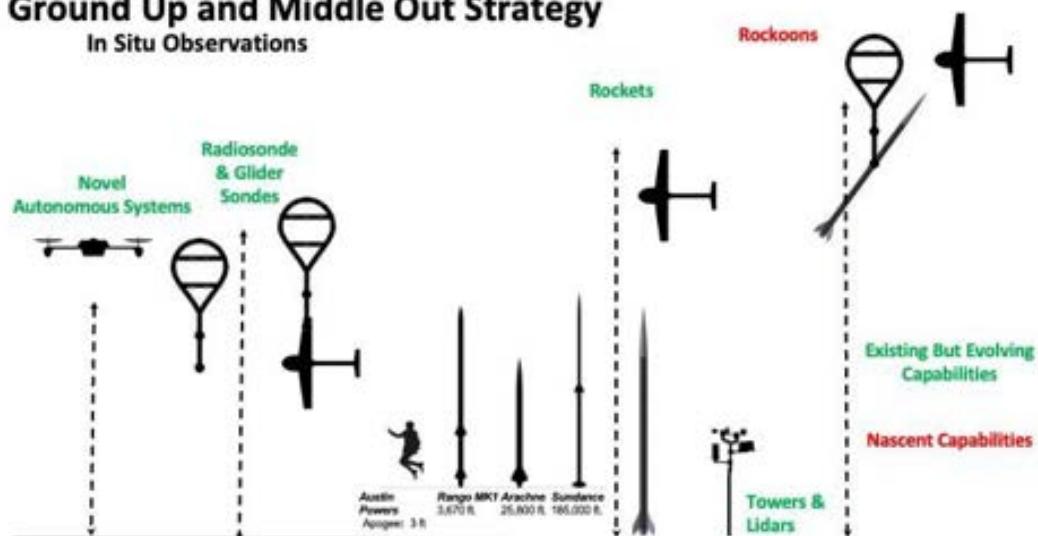

Mission Selection


Balloonborne Pseudo-Lagrangian Drifter Probes

Foundations in 2012

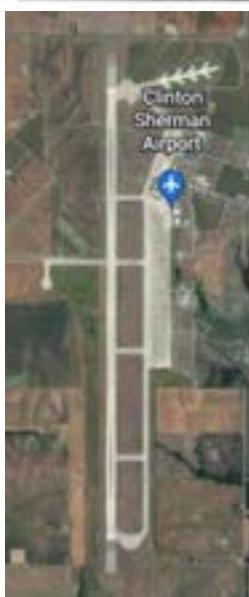
Rocket Launched UAS

Rocket Launched UAS

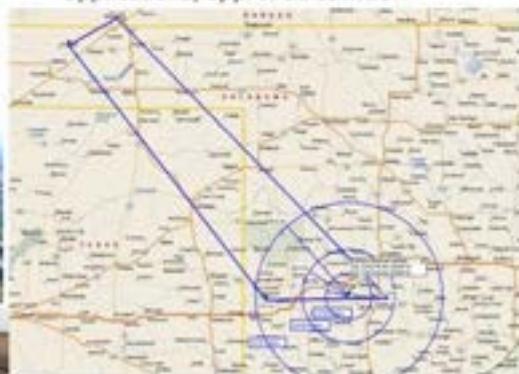

Rocket Launched UAS

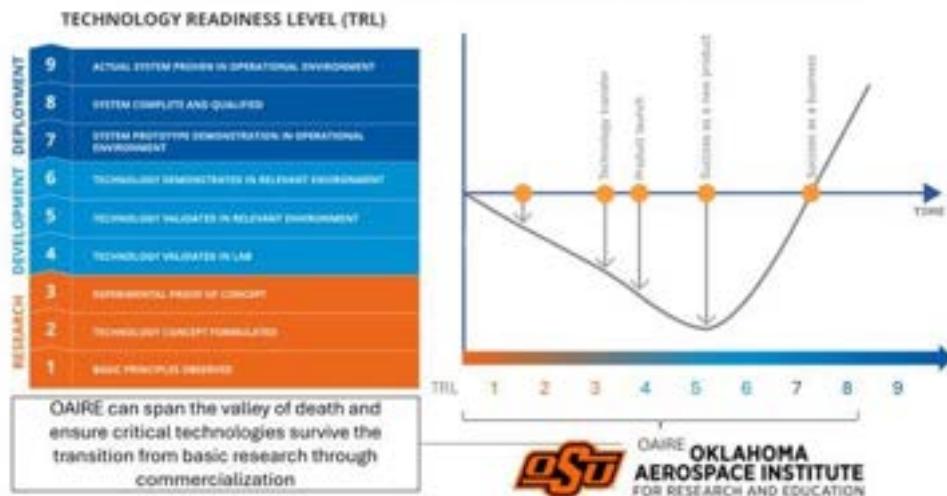
Launch Tests 2022

Ground Up and Middle Out Strategy In Situ Observations


Future Plans: Putting It All Together in a Rockoon

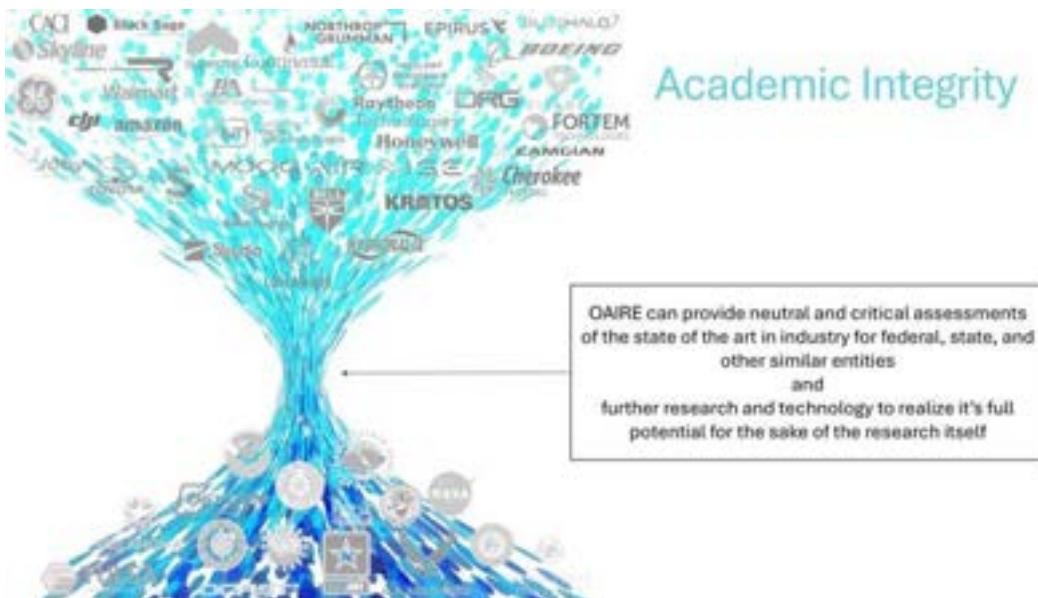
Balloon borne rocket with UAS glider with return to surface for observations from Karmen line on down.


NASA Advocate: David Zahn, ARC/OKC


OSIDA Droneeport

Location: Burns Flat, OK

Unique testing location with extensive runway for aircraft and rocketry applications; approved corridor.

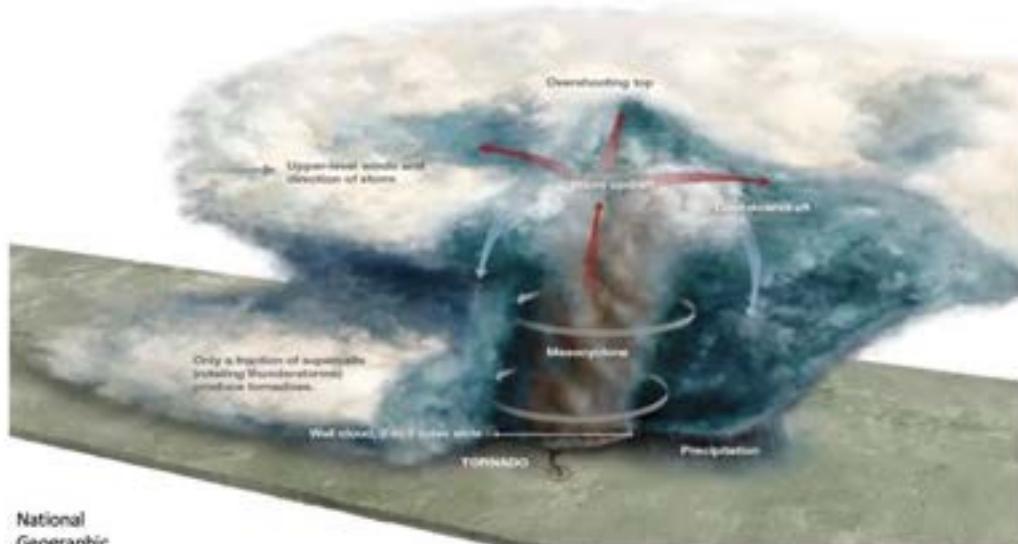
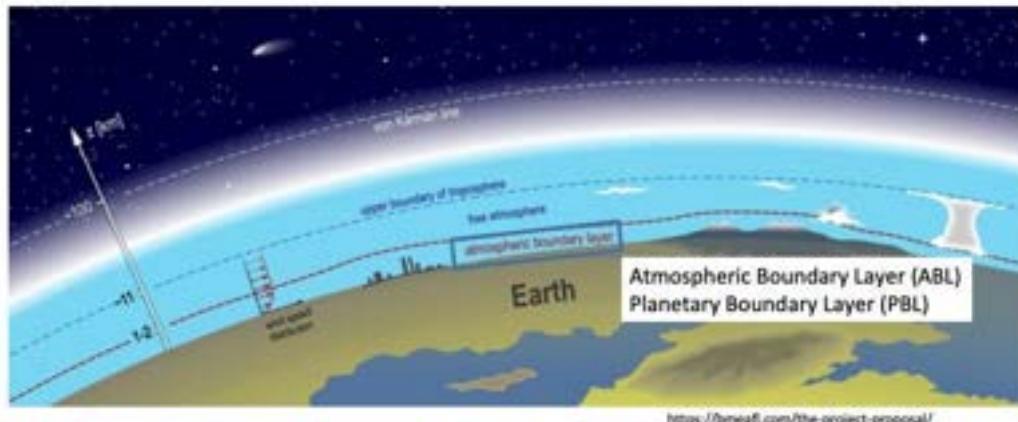


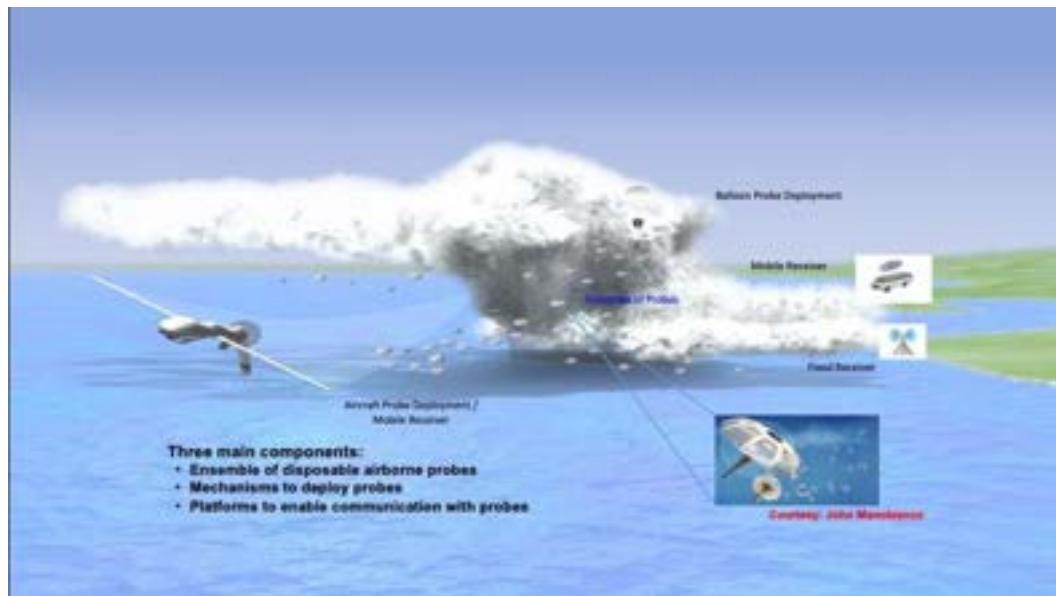
Filling Gaps for the Emerging Industry

Filling Gaps for the Established Industry

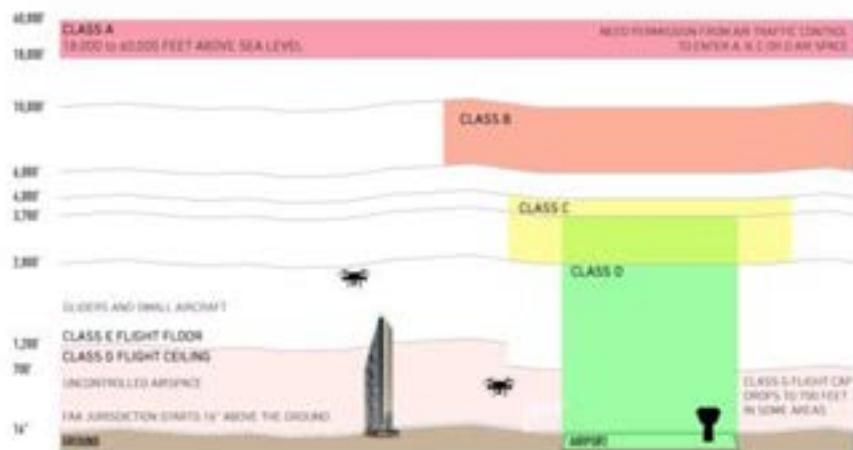

OAIRE can provide neutral and critical assessments of the state of the art in industry for federal, state, and other similar entities and further research and technology to realize its full potential for the sake of the research itself.

The strategy:

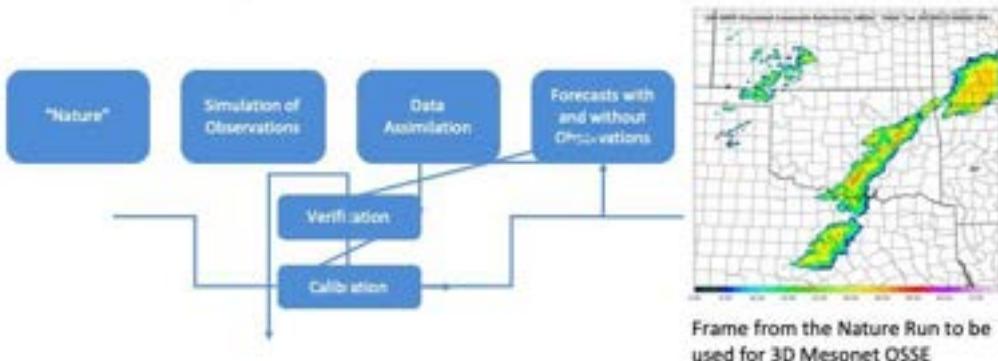


- The organization must have multiple and varied income streams
- The organization must be able to manufacture professional quality components and prototypes in small batches
- The organization must be able to produce professional level engineering documentation and deliverables similar to aerospace industry standards



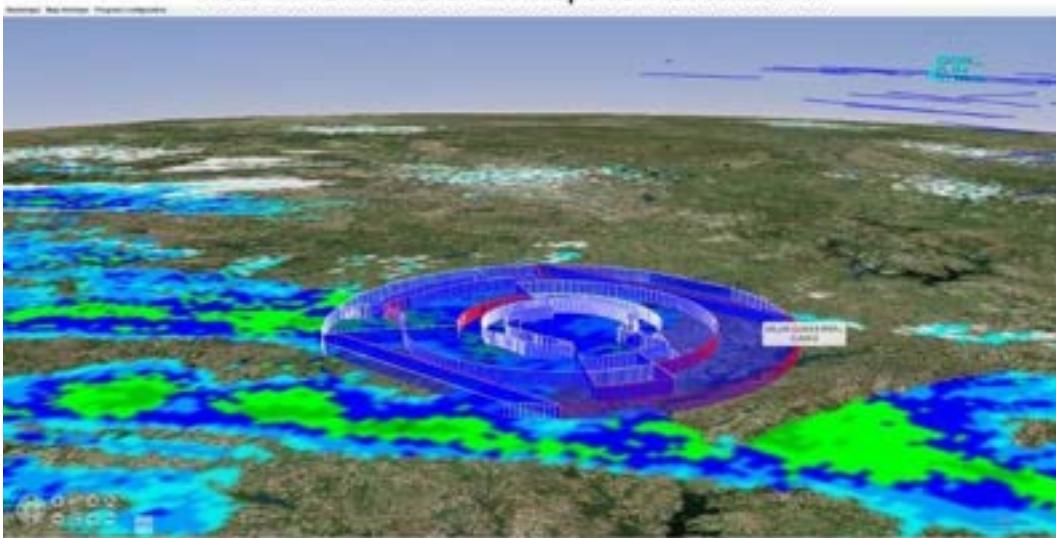
OAIRE & Oklahoma Assets



Structure of the Earth's Atmosphere



Airspace regulation

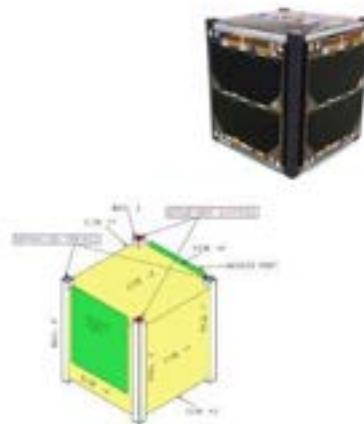


Observing System Simulation Experiments (OSSEs)

Using OSSEs we are able to determine the impact that a 3D Mesonet could have on numerical weather forecasts. The OSSEs will also help guide our decisions regarding how many stations are needed, how high the UAVs should fly, how often we flights are needed, the vertical resolution needed, how accurate the measurements need to be, and

Real-time Weather & Airspace Visualization

C11 - Polysat Program – Bleakley


WHO WE ARE

- Multidisciplinary, student run, small satellite research and development lab
- Responsible for over 12 satellites produced in 24 years
- Jumpstarted a \$200+ million industry
- Partnered with NASA, JPL, Northrup Grumman, the Planetary Society, the National Science Foundation, and more!

THE CUBESAT

- 1U size: 10cm x 10cm x 10cm
- Developed by Dr. Puig-Suari of Cal Poly and Dr. Twiggs of Stanford in 1999
- First launched in 2003
 - Cal Poly's first CubeSat launched in 2006
- First interplanetary CubeSat launched in 2018
 - MarCO (Mars Cube One)
 - Integrated at Cal Poly

THE CAL POLY CUBESAT LAB

- Started in 1999, alongside the inception of the CubeSat design
- 70 students across many colleges within Cal Poly
- Current missions:
 - SAL-E (Streamlined Assembly Learning Experiment)
 - AMDROHP (Additively Manufactured Deployable Radiator with Oscillating Heat Pipes)
 - GENESys (Green Energy Nanosatellite Engine System)

SPACEPORT APPLICATIONS

- Evaluate Performance
 - Dragsail deployment mechanisms
- Obtain Data
 - Increase TRL
- Refine Experiments
 - Implement lessons learned to enhance future prototypes and mission success
- Provide Opportunities
 - Hands-on research and development experience for students

TESTING APPLICATIONS

- IPEX Balloon Test (2012)
 - Over 100,000ft altitude
- Balloon tests can be unreliable and not as expansive as launches from spaceports
- Suborbital advantages:
 - Affordable
 - Recover the CubeSat
 - Controlled testing environment
 - Fast turnaround time

WORKFORCE CONTRIBUTIONS

- Student Engagement and Internships
- Partnerships with Industry
- Hands-On Learning Opportunities
- Workforce Pipeline Development
- Supporting the Growth of the Space Industry
- Enhancing Diversity and Inclusion

CUBESAT DEVELOPERS WORKSHOP

- Annual CubeSat Conference held at Cal Poly
- April 22-24, 2025
- Unites industry experts, researchers, and students to drive innovation in small satellite technology
- Synergy between local spaceports, industry, and educational institutions

C12 - Paso Robles Air and Spaceport Licensing Update – Scandalis

Paso Robles Air and Spaceport License Update

Mark Scandalis
Airport Manager
City of Paso Robles

Current Licensed Spaceports

U.S. SPACEPORTS AND LAUNCH/REENTRY SITES*

Map showing the locations of current spaceports and launch/reentry sites across the United States. The map highlights states with current spaceports (green), U.S. Federal sites (blue), and various FAA-licensed launch sites (orange, red, and purple dots). Specific sites labeled include: Pacific Spaceport Complex Alaska, Vandenberg Air Force Base (VAFB), Edwards Air Force Base (EAFB), Spaceport America, White Sands Missile Range, Cape Canaveral Air Force Station, Kennedy Space Center, and the Mid-Atlantic Regional Spaceport. The map also shows the locations of the Space Florida Launch & Landing Facility and the Space Florida Launch & Landing Facility Community Support Center.

*Source: NASA, USGS, and various space agency websites.

- 14 Public FAA licensed
- 3 Federal ranges
- 3 Private use

MAP LEGEND

- States with Current Spaceports
- U.S. Federal Site
- Various Site (Non-FAA Licensed)
- FAA-Licensed Horizontal Launch Site
- FAA-Licensed Vertical Launch Site
- FAA-Licensed Horizontal and Vertical Launch Site
- FAA-Licensed Recovery Site

Council Action: August 3, 2021

THE TRIBUNE

Authorization to start
Preapplication for Spaceport
License

Spaceport in Paso Robles? City wants to turn its airport into horizontal launch facility

Mayor Steve Martin

Council Action: February 28, 2022

Preliminary Technical
Review by Tartaglia
Engineering and S.O.
Witt and Associates LLC

**Paso Robles
Spaceport**

Preliminary Technical Review

Prepared by
Tartaglia Engineering
S.O. WITT and ASSOCIATES LLC

WITT TARTAGLIA ENGINEERING

Preliminary Technical Review

Council Action: June 7, 2022

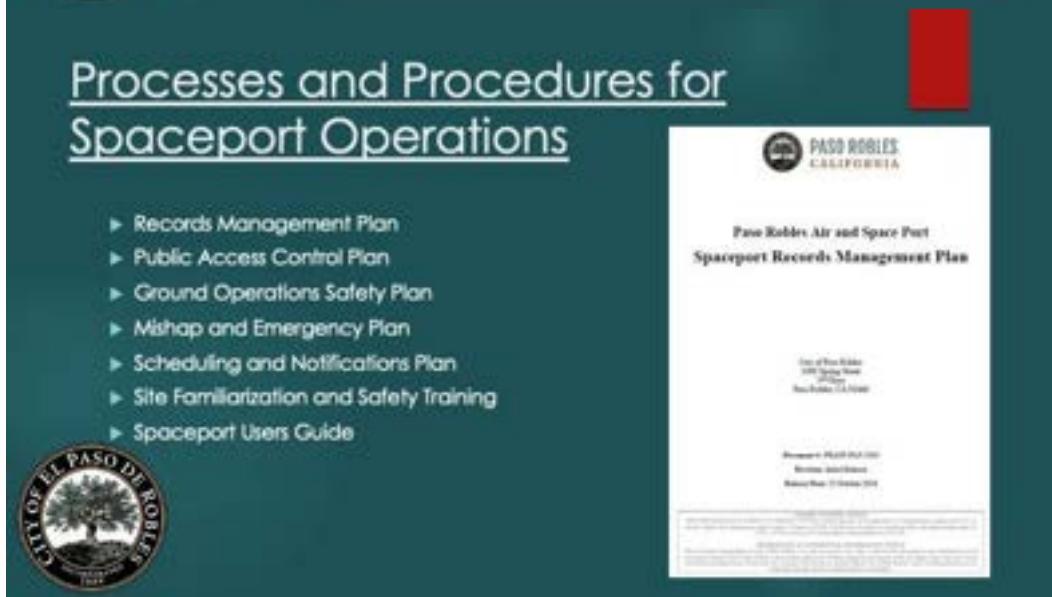
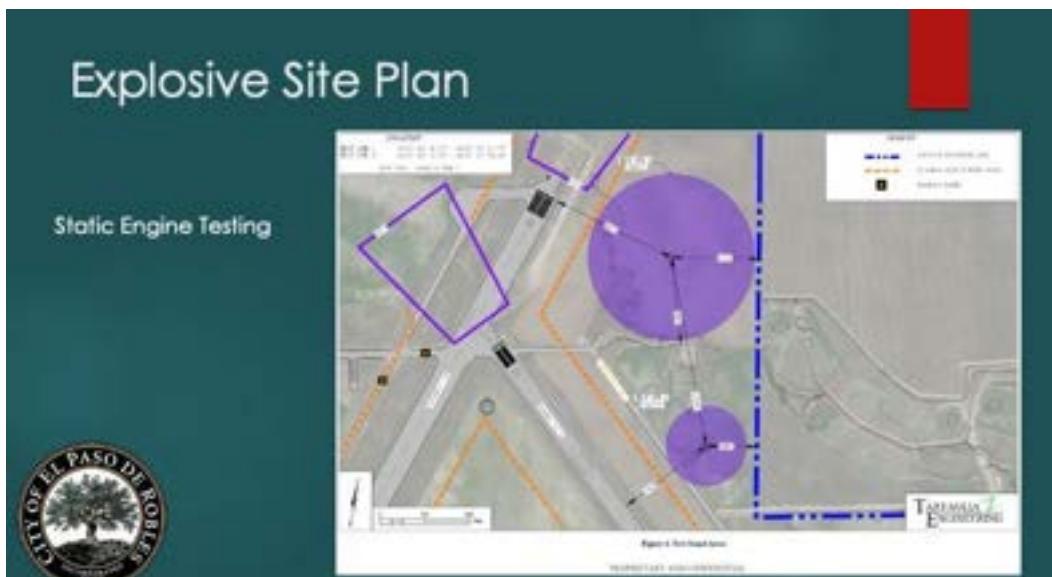
Authorization to work with
Tartaglia Engineering and
begin technical aspects
of Part 420 License
Application

Council Action: August 16, 2022

Authorization to Work with Cal Poly to begin Part 420 License Application

Major Components - Spaceport License

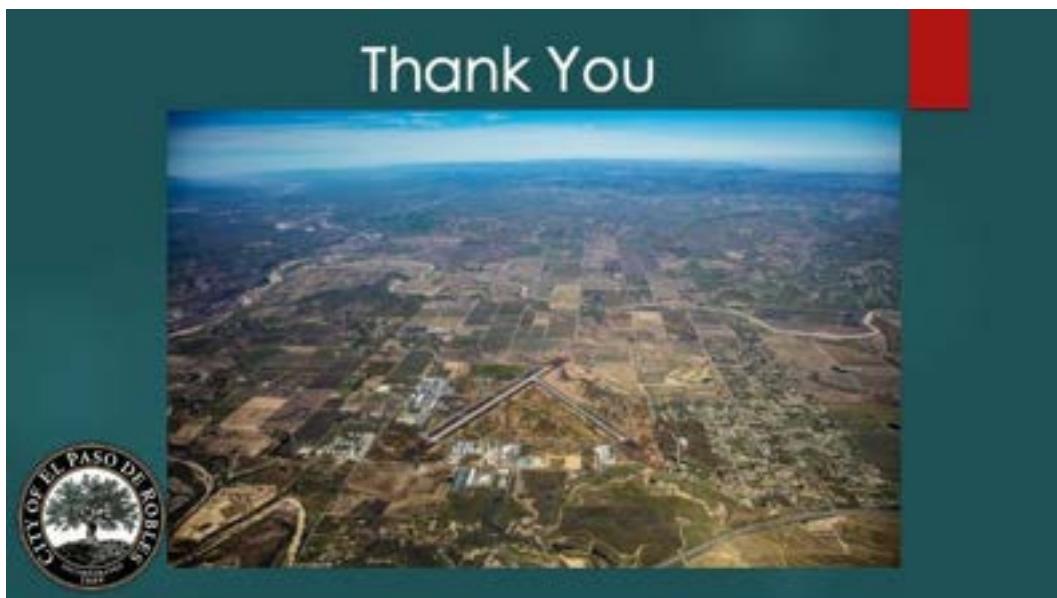
San Francisco Airports District Office:



- Master Plan/ALP
- Agreements with Local Agencies

Washington DC Office of Commercial Space (AST):

- Explosive Site Plan
- Processes and Procedures for Spaceport Operations
- Launch Site Location Review and Hazard Analysis
- Environmental Analysis

Council Action: April 2, 2024


Authorization Accept FAA
Grant to Update Master
Plan to Include Spaceport
concept (90% FAA Grant)

To Do

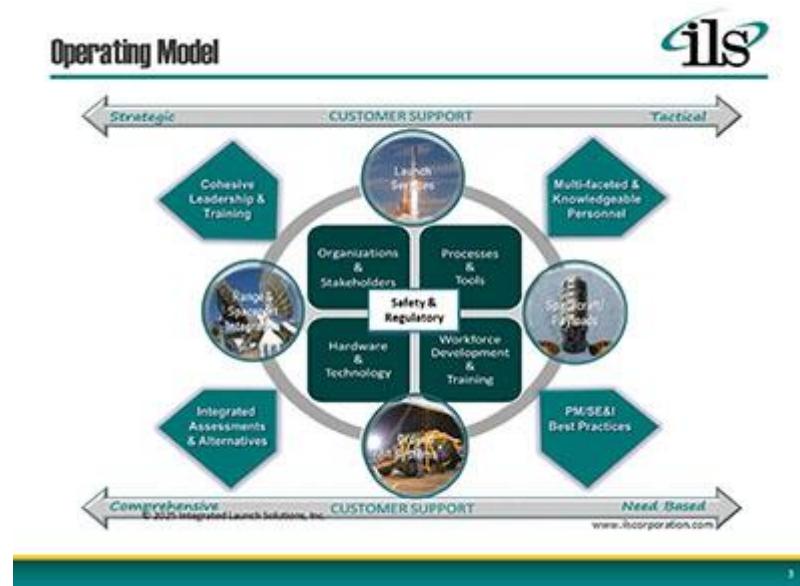
- ▶ Launch Site Location Review and Hazard Analysis
- ▶ Environmental Assessment
- ▶ Agreements with Local Agencies
 - ▶ Coast Guard
 - ▶ FAA Air Traffic
 - ▶ Camp Roberts
 - ▶ Fort Hunter Liggett
 - ▶ Others

C13 - Understanding Spaceport, Vehicle, and Payload Licensing – Kiernan

Understanding Licensing

CalPoly Conference on Atmospheric Research Using Commercial Suborbital Vehicles

28 FEBRUARY 2025


Company Overview

- Woman Owned Small Business founded in 2010
- Headquartered in Merritt Island, Florida
- Team member experience spans
 - 18 launch vehicle programs
 - 3 reentry vehicle programs
 - 10 spaceports/ranges
- Capabilities and Services
 - Systems Engineering (Commercial, NASA, DoD)
 - Regulatory Compliance and Licensing (FAA, FCC, NOAA, EPA)
 - Range/Spaceport Safety and Integration (CCSFS, VSFB, WFF, NMSA, AAC, MASP...)
 - SV/LV Operations and Integration
 - Infrastructure and Facilities (ULA, Blue Origin)

Sharing the lessons we've learned to save you time, money, and aggravation.

Regulatory Compliance / Licensing

- **Federal Aviation Administration (FAA)**
 - Part 101 Certificate of Approval or Waiver
 - Kites
 - Balloons [Moored, Free]
 - Amateur Rockets [3 Classes]
 - Part 414 Safety Element Approval
 - HW/SW solutions (e.g., Flight Safety System)
 - Services (e.g., Comm and Telemetry, Recovery)
 - Part 420 Spaceport Operator License
 - Vertical
 - Horizontal
 - Part 450 Launch/Reentry Vehicle License
 - Suborbital/Orbital Expendable Launch Vehicles
 - Suborbital/Orbital Reusable Launch Vehicles
 - Reentry Vehicles
- **Federal Communications Commission (FCC) [spectrum]**
- **National Oceanic and Atmospheric Administration (NOAA) [imaging]**
- **Environmental Protection Agency (EPA)**
- **State/County specific**

Spaceports (Part 420)

- **FAA responsible for International Policy, Public Safety, Environmental Stewardship**
- **Site Ownership, Integration & Safety**
 - Spaceport User Guidelines & Requirements
 - Explosive Site
 - Lightning Protection
 - Hazard Analysis
 - Ground Safety
 - Flight Safety
 - Public Access Control
 - Scheduling and Notification
 - Records Management
 - Mishap and Emergency Response Plan
 - Site Familiarization and Safety
- **Environmental Review**
- **Agreements**

Certificate of Waiver (Part 101)

<https://www.ecfr.gov/current/title-14/chapter-I/subchapter-F/part-101>

- **Class 3—Advanced High-Power Rocket**
 - Unmanned; suborbital
 - Motor or motors having a combined total impulse of 889,600 Newton-seconds (200,000 pound-seconds) or less;
 - Cannot reach an altitude greater than 150 kilometers (93.2 statute miles) above the Earth's surface
- **Key Deliverables (NLT 1-45 days)**
 - [FAA Form 7711-2](#)
 - Estimated number of rockets;
 - Type of propulsion (liquid or solid), fuel(s) and oxidizer(s);
 - Description of the launcher(s) planned to be used, including any airborne platform(s);
 - Description of recovery system;
 - Highest altitude, above ground level, expected to be reached;
 - Launch site latitude, longitude, and elevation, and;
 - Any additional safety procedures that will be followed;
 - Maximum possible range;
 - The dynamic stability characteristics for the entire flight profile;
 - A description of all major rocket systems, including structure, pneumatic, propellant, propulsion, ignition, electrical, avionics, recovery, wind-weighting, flight control, and tracking;
 - A description of other support equipment necessary for a safe operation;
 - The planned flight profile and sequence of events;
 - All nominal impact areas, including those for any spent motors and other discarded hardware, within three standard deviations of the mean impact point;
 - Launch commit criteria;
 - Countdown procedures, and;
 - Mishap procedures.

2/26/2025

Launch/Reentry Vehicle Operator License (Part 450)

<https://www.ecfr.gov/current/title-14/chapter-III/subchapter-C/part-450>

Means of Compliance

- Toxics Assessment for Flight
- Toxics Assessment for Ground
- Flight Safety Analysis Methodologies
- Highly Reliable Flight Safety System
- Lightning Protection

Policy Review

- Company Overview/Ownership
- Program Overview
- Site Overview
- Flight Profile Overview

Environmental Review

- Written Re-evaluation [of site with existing EA]
- Environmental Assessment (EA) [change in nature of operations]
- Environmental Impact Statement (EIS) [greenfield]

Payload Review

- Envelope payload types/hazards
- Processes for reviews
- Payload specific review

Safety Review

- System Safety Program
- Functional Hazard Analysis
- Hazard Control Strategy
 - Flight Abort
 - Flight Hazard Analysis
 - Wind Weighting
 - Physical Containment
- Flight Safety Analysis
 - Normal Flight Trajectory Analysis
 - Malfunction Flight Trajectory Analysis
 - Population Exposure Analysis
 - Probability of Failure Analysis
 - Flight Hazard Area Analysis
 - Debris Risk Analysis
 - Far field overpressure analysis
 - Toxics for flight analysis
- Computing Systems
- Safety Critical Systems OR
- Highly Reliable ISS
- Operations (Agreements, Procedures, Readiness, Comm, Tracking, etc.)
- Collision Avoidance
- Mishap and Emergency Planning
- Ground Safety

2/24/2025

Payload Review

**Generally included in the LV licensing review; however issues still apply to manufacturing, testing, ground ops*

- Ownership/Operation
- Captive Carry vs Release
- Hazard Analysis (people and other payloads)
 - Batteries
 - Pressure Vessels
 - Ordnance
 - Commodities
 - Ionizing or Non-ionizing Radiation (Emitters)
 - Toxics
 - Radionuclides
- Procedures for Hazardous Operations

License Approval Schedule/Cost Drivers

- Maturity, availability, and level of fidelity of the launch vehicle design and test data.
- Certification of the Autonomous Flight Safety and Navigation Systems to RCC 319/324.
- Flight Safety Analysis Methodologies require deep dive into model source data and algorithms, 6-DoF trajectory model, materials/debris, risk analysis software (third party), and benchmarking data/information. [critical path]
- Approval of Flight Safety Analysis Methods and satisfaction of risk criteria (e.g., population overflight, debris risk, hazard area control, expected casualty) [critical path]
- FAA-AST resources and review timelines (extremely backed up – “the queue”).
- FAA-AST evolving expectations and checklists (each vehicle/mission/flight profile has a learning curve).

Paso Robles Air and Space Port

- **Licensing**
 - Plans/Procedures
 - Flight corridor and launch area analysis
 - Environmental Review
- **Spaceport/Customer Integration**
 - ConOps/Requirements Review
 - Safety Review
 - Hazard Analyses
 - Process/Procedure Reviews
 - Licensing / Approval Guidance & Support
- **Infrastructure**
 - Capabilities and services
 - Facility layout
 - Operability
- **Community Outreach / Communication**

Contact Information

Integrated Launch Solutions, Inc.
350 Tangerine Ave. STE 5
Merritt Island, FL 32953

www.ilscorporation.com

Cheree Kiernan
cheree.kiernan@ilscorporation.com
(o) 321-877-2206
(m) 321-830-2481

11

C14 - Bridging the Gap: Collaboration Between Industry, Academia, & Government for Spaceport Operations – Kiernan, Meyer, Sanchez, Crocket, Mierau

Panel Members

Robert Meyer
Employment Training Panel
Workforce Development

David Sanchez
Streamline Aerospace
Commercial Aerospace Company

Bob Crockett
Dean of Engineering at Cal Poly
Education and Outreach

Mike Mierau
Premier Valley Bank
Finance

The panel members are listed with their names and professional roles. To the right of the list are three small, square images: the top one shows two people shaking hands on a globe, the middle one shows a map of a region, and the bottom one shows a group of people in a meeting.

Industry Challenges/Gaps

- Purpose/Utilization – If you Build it, Will They Come?
 - It's easier to get a spaceport operator license than a launch license
 - *Paso's approach → Education is a purpose with a spaceport*
- Funding – What Comes First, the Chicken or the Egg?
 - Can't get contracts without the vehicles and infrastructure
 - Can't get vehicles and infrastructure without the contracts
 - Low-cost programs require low-cost platforms which require high launch cadence
 - *Paso's approach → Leverage education grants, private industry, and commitments to potentially sponsor payloads and flights*
- Spaceport Ecosystem – It Takes a Village!
 - Think beyond launch operations (e.g., R&D, engineering, manufacturing, test, etc.)
 - Engage support services (e.g., Logistics, Processing, Comm and Telemetry, etc.)
 - Engage the community using recurring and open communication
 - *Paso's approach → Here we are today*
- Workforce/Education – Can We Create and Keep Skilled Resources Here?
 - Availability of engineers, technicians, quality, safety, security, contract management,...
 - *Paso's approach → Leverage local and state resources to educate, prioritize, and train the workforce to attract and sustain new business/industry*

Employment Training Panel

Building the Paso Robles Space Economy

February 28, 2025

*Robert Meyer
Director of Economic Development
916-737-4181
Robert.Meyer@etp.ca.gov*

The logo for the Employment Training Panel (ETP) is circular. It features the letters "ETP" in the center, with "CA" above it and "EMPLOYMENT TRAINING PANEL" around the top edge. Below the letters is a stylized orange bear.

Essential ETP

ETP is a business and labor supported State agency that uses a **pay-for-performance contract** to reimburse the costs for employer-customized job skills training.

The Panel works because employers define the occupations to be trained, training topics, delivery methods and training providers.

ETP will award **\$95M** in contracting capacity for FY24/25.

ETP Contract Models

Single Employer (\$600,000 cap for FY2024/25)

ETP eligible employer trains employees in employer-customized job skills training.

Multiple Employer Contractor (MEC) (\$850,000)

ETP contractor aggregates training needs to train and place job seekers and/or upskill workers.

- *Group of Employers (Trade Association, Chamber of Commerce, Economic Development Corporation)*
- *Training Agency (University Foundations, K-16)*
- *Workforce Development Board, WIOA Grant Administrators*

Job Creation, Equity and Impact

Priority Industries and Small Business

- Grow businesses, create new jobs, and retain jobs
- Align training programs to fit job needs

Climate and Environmental Strategy

- RESPOND to natural disasters, Forestry Workforce,
- Agriculture Technology and Workforce
- Support zero-emission vehicle technology

Aligned State / Federal Grants

- CASCADE (OLUCI), CHIPS Act, DOD Supply Chain

Equity

- Focus on underrepresented workers and job seekers
- Support economically disadvantaged communities

WWW.ETP.CA.GOV

Wider Investment Lens

California Jobs First

- Leveraging the Uplift Central Coast regional plan

California Workforce Development Board

- High Road Training Partnerships
- Workforce Accelerator Fund

Department of Industrial Relations /

Division of Apprenticeship Standards

- Apprenticeship Innovation Funding

Federal Investment for Defense and Energy Sectors

- Leveraging investments for adding resilience and capacity to DOD and DOE supply chains particularly for manufacturing and technology

WWW.ETP.CA.GOV

Employment Training Panel Connect with our team!

- Elise Candelaria** elise.candelaria@california-etp.org
Senior Economic Development Analyst
Health Care & Financial Services
California
- Jordan Petrich** jordan.petrich@california-etp.org
Senior Economic Development Analyst
Services, Agriculture & Energy
RESOURCES, Agriculture Initiatives
- Olga Wadzinski** olga.wadzinski@california-etp.org
Senior Economic Development Analyst
Central Coast, Inland Empire, San Joaquin & Orange County
RESOURCES, CALIFORNIA, Agriculture
- Rebecca Eusery** rebecca.eusery@california-etp.org
Senior Economic Development Analyst
San Diego County, Imperial County & Inland Empire/Mojave
RESOURCES, CALIFORNIA, Agriculture
- Robert Myrer** robert.myrer@california-etp.org
Director of Economic Development
Inland Empire
100 W. 12th Street, Suite 1000

 California ETP

connect@etp.ca.gov
916-737-4181

Thank you for your time!

connect@etp.ca.gov
916-737-4181

