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High Level Elements

1. Json Payloads Created
2. S3 Events sent to a message queue
3. Lambda invoked against message (preprocessing)
4. Check event register (prevent processing event twice)
5. Return check
6. Generate embeddings of content
7. Store in AOSS
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High Level Elements

1. Start search process
2. Initiate Lambda
3. Invoke step function
4. Store step function ARN
5. Initiate websocket
6. Update arn to map to connection id
7. Process workflow
8. Get embeddings or perform LLM call
9. Retrieve results from vector store
10. Post back message to user
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Similar Query Bypass Logic
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Note: in production we will want to optimize this workflow as well 

as the data that is stored.

Currently, user query also includes the document results of 

matches.

We could strip these and perform a regular search for documents 

(but bypass Bedrock).

Improvement: We can utilize caching with Amazon ElastiCache 

to provide the user with even better response times as well as 

bypass reads/writes on Amazon OpenSearch Serverless

Consideration: Document results when new documents are 

ingested when pertaining to similar query bypass logic. Possible 

check would be stored mappings of doc ids in our query versus 

top 3 that search returned.  Mismatches mean we must 

regenerate Bedrock response and restore accordingly.

Consideration: OpenSearch is eventually consistent; have 

potential to address these mismatch “timings” of documents 

through clean up routines or address through a processed queue 

of data (SQS) instead.

Consideration: Consider introducing 

Amazon ElastiCache into production 

workflows for further latency improvements

Amazon 
ElastiCache


