
POC Technical Architecture

2© 2023, Amazon Web Services, Inc. or its affiliates.

3© 2023, Amazon Web Services, Inc. or its affiliates.

Ingest Trusted Article

3© 2023, Amazon Web Services, Inc. or its affiliates.

Amazon DynamoDBAmazon Simple Queue
Service (Amazon SQS)

Amazon Simple Storage
Service (Amazon S3)

JSON script

AWS LambdaUser

Message

Upload

Amazon OpenSearch Service

Consume

Check Event Register

Event Response

Amazon Bedrock

G
en

er
at

e
Em

be
dd

in
gs

Ingest Docum
ent

1 2 3 4

5

6

7

High Level Elements

1. Json Payloads Created
2. S3 Events sent to a message queue
3. Lambda invoked against message (preprocessing)
4. Check event register (prevent processing event twice)
5. Return check
6. Generate embeddings of content
7. Store in AOSS

Search Trusted Article

4© 2023, Amazon Web Services, Inc. or its affiliates.

Amazon API Gateway
(REST)

Amazon API Gateway
(WEBSOCKET)

Amazon DynamoDB

POST /api/async/search

AWS Step FunctionsAWS Lambda

Client Application

Execution ARN

AWS Lambda

Open Socket w/

Execution ARN

Update execution

arn entry w/

connection id info

AWS Lambda

States

AWS Lambda

Amazon Bedrock

Amazon OpenSearch Service

Generate Embeddings

Search Mode (Hyde, Raw)

Similar Query Bypass Logic

Missed hit insertion

Search with embeddings

Execution ARN

Conn ID

Post message on
websocket

(Search results)

1
2

4

3

5

6

7

8

9

10

High Level Elements

1. Start search process
2. Initiate Lambda
3. Invoke step function
4. Store step function ARN
5. Initiate websocket
6. Update arn to map to connection id
7. Process workflow
8. Get embeddings or perform LLM call
9. Retrieve results from vector store
10. Post back message to user

5© 2023, Amazon Web Services, Inc. or its affiliates.

Similar Query Bypass Logic

5© 2023, Amazon Web Services, Inc. or its affiliates.

Embed User Question

Search User Question Collection
(Max Results = 1; IE Highest

Match)

Normal Search w/ Bedrock

Is Score 1?

Is Score >
Threshold

No

No

Update user question document w/
by adding user question to similar

statements field of document

Return Search Results to User

Note: in production we will want to optimize this workflow as well

as the data that is stored.

Currently, user query also includes the document results of

matches.

We could strip these and perform a regular search for documents

(but bypass Bedrock).

Improvement: We can utilize caching with Amazon ElastiCache

to provide the user with even better response times as well as

bypass reads/writes on Amazon OpenSearch Serverless

Consideration: Document results when new documents are

ingested when pertaining to similar query bypass logic. Possible

check would be stored mappings of doc ids in our query versus

top 3 that search returned. Mismatches mean we must

regenerate Bedrock response and restore accordingly.

Consideration: OpenSearch is eventually consistent; have

potential to address these mismatch “timings” of documents

through clean up routines or address through a processed queue

of data (SQS) instead.

Consideration: Consider introducing

Amazon ElastiCache into production

workflows for further latency improvements

Amazon
ElastiCache

