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Abstract

Food security is a global issue that affects many developing countries. Households

vulnerable to seasonal food security are expected to be impacted by future crises

such as climate change, economic recessions, and pandemics. Past literature apply

parametric models to measure food security; machine learning algorithms can improve

the modeling accuracy of food security predictions. In this paper, we compare ordinary

least squares, ridge regression, and random forest for predicting food security based on

the Global Food Security Index (GFSI). We evaluate the model with the best out of

sample accuracy and determine key indicators of the GFSI. We find a random forest

provides the best out of sample predictive accuracy, with the second lag (2 years prior)

of average dietary energy supply adequacy found to be the main driver of the random

forest model. This paper illuminates the advantage of machine learning algorithms in

predicting food security and motivates informed policy considerations for long term

intervention.
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1 Introduction
As of 2018, 42 million individuals live in a food insecure situation in Latin American and
Caribbean (LAC) countries (Salazar and Muñoz, 2014). With a predicted increase of 1.7
billion in world population by 2050, global food production must increase by 70% to maintain
current levels of food security (Mc Carthy et al., 2018). Food insecure households can be
determined by low education, limited social capital, and living in countries with low GDP per
capita (Smith et al., 2017); access to food and water is also driven by economic factors such
as income, livestock, and produce; and external factors such as climate change, international
trade, and urbanization (Corral et al., 2000). Obtaining empirical information on food
security is critical for early famine monitoring, informing effective government policy and
directly targeting the causes of hunger and starvation. (Weber et al., 1988).



Countries and global organizations have developed differing approaches towards assessing
food security by regional and country levels; the Global Food Security Index (GFSI) assesses
country-level trends in food security, while others such as the Famine Early Warning Systems
Network (FEWS NET) projects future levels of food security (Jones et al., 2013). As many
indices apply qualitative and quantitative techniques in the development of their models,
research has been done to identify the most relevant determinants of food security (Smith
et al., 2017). Governments often lack the mechanisms to make informed decisions; past
literature have attempted to provide economic and quantitative models suitable for modeling
and predicting food security (Mbukwa, 2013). The issues with such models include data
availability and limitations in chosen indicators being applicable outside of their studied
regions.

The purpose of this paper is to develop and train a model to predict food insecurity in several
countries within the LAC region and compare the model with conventionally used regressions.
We apply indicators from the World Bank and Food and Agriculture Organization to construct
several models that predict the GFSI score as a benchmark for food security levels. We
construct least squares regression, ridge regularization, and random forest models to determine
the most accurate method for predicting GFSI score. We find that the ridge regression model
predicts food security with the greatest accuracy—an out of sample accuracy of 9.20%. Our
results also indicate that out of sample predictive capability improves as model complexity
increases. Our results help to provide a framework for choosing a suitable quantitative model
in predicting food security.

1.1 Literature Review
A multitude of socioeconomic factors impact regional food security. According to the Food
and Agricultural Organization, food security is determined by four dimensions: (i) the
physical availability of food; (ii) economic access to acquiring food for a nutritious diet; (iii)
food utilization in which diet, water, sanitation, and healthcare satisfies nutritional needs;
and (iv) stability of the other three dimensions over time (FAO, 1996). Driving indicators
that are often considered include household education level, household income level, quality
of diet, and living in a country with a low GDP per capita (Frongillo et al., 2017; Mbukwa,
2013; Smith et al., 2017). Other possible indicators also include birthweight, food supply,
livestock, and poverty levels (Masih et al., 2017).

Regional indicators that address environmental and climate characteristics are also vital in
predicting food insecurity. Climate change impacts crop productivity and food availability
over time; climate variability can exacerbate food security in areas vulnerable to hunger
(Wheeler and von Braun, 2013). Gbegbelegbe et al. (2014) show that extreme climates
can diminish crop production on the national and international level—placing pressure on
smallholder farmers who rely on a single crop for a large portion of their nutritional intake.
Alpízar et al. (2020) further shows that Central American households are vulnerable to
seasonal food insecurity and can be further exacerbated by climate change.
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The Global Food Security Index (GFSI) is one composite measure that has monitored annual
national-level food security across 113 countries since 2012 (EIU, 2019). The GFSI uses 34
indicators spanning the following domains of food security: affordability, availability, and
quality and safety (Jones et al., 2013). National GFSI scores are calculated by weighting these
indicators and scoring countries on a 100-point scale. Values near zero indicate extremely
alarming levels of hunger; values near 100 indicate low levels of hunger (Henneberry and
Carrasco, 2014). Izraelov and Silber (2019) validates the GFSI as a reasonable measure of
food security; they conclude that the choice of indicators and weights selected by the EIU
provide a reasonable ranking of countries by their level of food security and is close to other
widely used indices.

Previous literature has focused primarily on identifying determinants of food security or
evaluating indices—Mbukwa (2013) proposes a logistic regression to measure the impact
of indicators on food security and Backer and Billing (2021) finds FEWS NET projections
of food security in Africa to be 84% accurate. However, there is an absence in applying
machine learning applications to match or surpass predictive power of indices; Razzaq et al.
(2021) determined random forest to be the best machine learning algorithm in of predicting
food security in rural areas of Pakistan. As machine learning methods can reduce bias
and overestimation that may occur in the case of nonlinear data (Cai et al., 2018), it may
be desirable to expand the applications of machine learning to predict food security across
countries and regions.

Thus, we find it useful to apply machine learning algorithms to improve the evaluation of food
security and address the need to make informed interventions to create sustainable solutions
to food insecurity (Salazar and Muñoz, 2014; Smith et al., 2017). This paper compares
several computational methods to accurately predicts food security across countries; we apply
ordinary least squares, ridge, and random forest regression models based on food security
indicators provided and historic GFSI data. We measure the coefficient of determination
(R2) to evaluate the out of sample accuracy of our models and feature selection to identify
key indicators of food security.

Section 2 describes the GFSI and data used. Section 3 presents the regression model. Section
4 presents the empirical results for predicting levels of food security with a set of indicators.
Section 5 concludes.

2 Data

2.1 Variable of Interest: Global Food Security Index
The Economist Intelligence Unit’s Global Food Security Index (GFSI) assesses food security
across countries (EIU, 2019). The 2019 GFSI uses 34 indicators to cover several dimensions
of food security: Affordability, Availability, and Quality or Safety. To calculate the index,
GFSI data is scaled to a value between zero and a hundred. The three category scores are
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calculated as the weighted means of the indicators; the GSFI score is then calculated as the
weighted means of the category scores, where values approaching 100 represent food secure
countries. Table 3 presents the GFSI correspondence to each country and year. We do
not adjust these results with the optional Natural Resources and Resilience category; past
literature have shown that GFSI scoring using the three default category scores provides a
reasonable measure for assessing food security. In this project, we have 9 observations of
GFSI Score per country for a total of 90 observations of the outcome variable (Henneberry
and Carrasco, 2014; Izraelov and Silber, 2019; Thomas et al., 2017).

2.2 Explanatory Variables
We collected several food security indicators from the Food and Agriculture Organization
(FAO) and World Bank. FAO data collects information on exports and imports, employment
levels, per capita food supply, and potential food driven health effects on women and children
for LAC countries between the years of 2010 to 2019. The World Bank provides data on
industry shares of GDP, national support policies, and multidimensional poverty headcounts.
The countries of interest in this project include: Argentina, Bolivia, Brazil, Chile, Ecuador,
El Salvador, Guatemala, Honduras, Nicaragua, and Peru. In total there are 100 observations
which equate to 10 years worth of data for each indicator in each country.

Table 1 and Table 2 display each of the indicators being used in our models, their average
value and standard deviation between the years 2010 and 2019, and separate them by
information source. The majority of the information gathered from these sources are results
from large surveys conducted by local institutions.

2.3 Data Processing
We collected GFSI and World Bank data with the intention to have indicators of GFSI for
the years 2012 to 2020. The countries we collect data for include: Argentina, Brazil, Bolivia,
Chile, Ecuador, El Salvador, Guatemala, Honduras, Mexico, Nicaragua, Peru, Venezuela.
We combine FAO and World Bank data together to observe indicator values across each
country and each year. We also combine the data set with GFSI data for ease of applying
regression models in later sections. For our purposes, we will use lagging data to predict the
outcome (GFSI). We expect that predicting GFSI in year t requires information from years
t� 1 and t� 2, our models will reflect this assumption and include lagging data.

While some indicators report data for each year, other indicators report data every few
years. To address empty values in the data, we apply imputation—a method in which we
replace missing data with substituted values. In this case, we compute substituted values by
applying a countryâs year-fixed value for one indicator into subsequent years. Our method
of addressing missing values in data is unique; Mbukwa (2013) analyzed food security with
survey data collected in a district within Tanzania, while Razzaq et al. (2021) collected data
in rural areas of the Punjab province in Pakistan. While past literature has focused on
comparing rural data in a single country to study food security, we collect and impute data
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across countries to compare food security at the macro-scale.

3 Problem description
As discussed in the literature, classifications such as the GFSI apply dozens of variables
across different dimensions to measure food security. It can be burdensome to collect the
required data for all of these variables. Additionally, too many variables in a model can lead
to a curse of dimensionality—requiring an extremely large amount of test data to make our
model useful for out of sample prediction. We select a smaller set of relevant indicators of
food security based on the availability of data and develop a model that predicts GFSI as
measure for food security. We construct several different models and test the accuracy of
each while using our selected set of predictors.

We first estimate an ordinary least squares regression model where the outcome variable is
the GFSI score ranging from 1 to 100, and the predictors are the selected subset of indicators
discussed above. GFSI is continuous and the higher scores represent greater food security.
We estimate the following model:

Ŷ = �0 + �1X1 + · · ·+ �nXn + "i,

where Ŷ is the predicted or expected GFSI score, X1, . . . , Xn are the n distinct predictor
variables, �0 is the predicted GFSI score when all predictors are equal to zero, �1, . . . , �n are
the estimated regression coefficients, and "i is the error term. We assume "i to be normally
distributed.

In the next model we apply a form of regularized regression; we apply a ridge model, a form
of penalized regression that improves on OLS in making out-of-sample predictions. This
technique can shrink our coefficients relative to OLS; in situations where OLS estimates
have high variance, we can see a significantly reduced variance with only a small increase
in bias. Ridge models are effective in cases where there are a large number of predictors
compared to our sample size n, or when we expect multicollinearity in the data. In our case,
we would expect that a lot of food security drivers would be correlated. Recall that for OLS,
we minimize the sum of squared residuals (SSR). For the Ridge model, we minimize:

Loptimal = SSR + ↵

nX

j=1

�j
2
,

where ↵ is a tuning parameter and �j is the slope coefficient for indicator j. The term
being added to the SSR is called the shrinkage penalty—it penalizes indicators with larger
coefficients. In this model, we run cross validation with different ↵ values and pick the one
which minimizes Loptimal. In this model, we assume that each indicator has an impact on
the GFSI score.
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We estimate a random forest as the third model. Implementing this model is necessary
because the previous two models only consider linear relationships between indicators and
GFSI score; we want to consider non-linear relationships as well. A random forest is a
vast array of decision trees—all with different combinations of predictors—that predicts the
outcome based on the results from each tree. The individual trees are largely uncorrelated, so
the outcome most frequently predicted by the decision trees becomes the model outcome. The
large number of uncorrelated models acting as a committee will outperform each individual
tree in the forest. A random forest model also implicitly performs feature selection: as the
individual decision trees are constructed, the model keeps track of which indicators do the
best job at consistently predicting the right outcome. The final model output will therefore
include a ranked list of the most important predictors in determining GFSI score.

Finally, to evaluate each of the three models evenly, we will perform a train-test split on
the data to evaluate the out of sample predictability of each model on GSI scores. Our
evaluation criterion for each model will be the out of sample R

2 as well as the Mean Squared
Error (MSE).

4 Results
In this section, we establish how well did our models predict GFSI score, and what possible
shortcomings exist with each model. First, it is important to state that the following models
are used to predict Global Food Security Index score, not establish causal inference of the
indicators. Coefficient estimates, in our case, are therefore uninformative and are considered
irrelevant. Since our intention is to focus on out of sample prediction, we will evaluate the
out-of-sample R

2 and mean squared error or each model. Producing the three models, each
with varying complexity, illustrates which technique yields the most accurate predictions.
Section 4.1 explores the three unique models discussed in section 3, in addition to the possible
shortcomings each model faces.

4.1 Model Accuracy and Comparisons
We begin by estimating an ordinary least squares regression (OLS) on the Food Security
Indicator covariates listed in Table 1 and Table 2. Also listed in Table 3 are the relevant
model evaluation criterion. In the OLS model, we find an out-of-sample R

2 of 0.70, which
indicates that 70% of the the variability in predicted GFSI score can be explained through
our covariates. In addition, the OLS model has a mean squared error of 6.967. While
convenient and simple, this particular model has a low out of sample R

2 and a higher MSE
relative to other models.

To create a model with greater predictive power, we consider a ridge regression model, which
minimizes Loptimal as listed in section 3. The main advantage of ridge regression in this case,
we assume collinearity is present in the data. This improves the prediction variance of the
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model at the cost of producing biased results. We find that the ridge model produces an
out of sample R

2 value of 0.86; we also notice that the MSE for this model was 2.701. At
the cost of biased estimates, the ridge model provides a higher out of sample R

2 and smaller
MSE than the OLS model.

The final model we estimate is a random forest, which captures many of the non-linear
relationships Ridge and OLS cannot. As the selected indicators are drivers of food security,
that they are correlated in some way. A random forest model runs uncorrelated decision
tress and produces a balanced reduction in both bias and variance. In the random forest
model, we find an out of sample R

2 of 0.902; the highest value of all our models. We also
observe an MSE of 2.04; the smallest value among each model. Following directly from the
three models, we find that increasing model complexity does results in better out of sample
predictive capability.

The selected food insecurity indicators demonstrates a trend of accurate predictions of Global
Food Security Index score, with a random forest being the most accurate of the three. In
addition to having the highest R

2 value and lowest MSE value, the random forest also
displays the most relevant indicators. According to our model, the second lag of average
dietary energy supply adequacy (3 year average) is the indicator with the highest importance
in predicted GFSI score.Feature selection like that performed on our random forest, is an
important application determining the key indicators of food security. Models and studies
that examine the most relevant food security indicators are critical in helping us understand
how aid is to be distributed.

Although we found strong predictive capability among our three models, we have a number of
concerns with these findings. We found a lack of available data for many potential indicators
of food security and made the decision to omit some indicators from our models. GFSI data
was also limited�GFSI scores have been recorded from 2012 to 2020, which further restricted
our data and analysis. Lastly, our model predicts GFSI scores rather than the levels food
security� though GFSI can be argued as an adequate and widely used index for identifying
levels of food security across countries.

5 Discussion and Conclusion
In this paper, we developed predictive models using food security indicators and GFSI data
in LAC countries to provide further insight and solution towards accurately predicting food
security across countries. Data from the from the GFSI, Food and Agriculture Organization
(FAO), and the World Bank were adequate for applying models to test prediction power.
Many food security indices complement their models with dozens of indicators and expert
input; we reduced the number of indicators needed to compute and predict GFSI scores and
removed qualitative analysis from the evaluation process.

Using a subset of indicators from the World Bank and the Food Agriculture Organization,
we constructed a set of 3 models (each of varying complexity) that predicted GFSI scores.
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In comparing these computational models—ordinary least squares, ridge, and random forest
regression—the ordinary least squares model results in a low out of sample of R2 and high
mean squared error compared to the other models. The random forest model was the best
model in predicting GFSI score with an out of sample R

2 = 0.894, perhaps indicating there
were non-linear relationships captured in the random forest that went undetected in the OLS
model. The random forest model also produces a relatively smaller mean squared error of
2.04 compared to the other models.

There are several caveats to our findings, the most significant of them being a severe lack of
data. Some of the indicators used in our models reported data on a yearly basis, while overs
were based on surveys and reported data every 4-6 years. This makes changes in vital food
security indicators very hard to track, and even more difficult to model. Many indicators
were of high interest for modeling purposes, but were omitted due to poor data availability.
Additionally, our outcome variable of choice (GFSI) has only been measured from 2012-
present, meaning our yearly observational units were further restricted to that time frame.
We applied imputation to to fill in missing values in our data—all missing values were filled
in with the mean indicator value on a country-by-country basis. This method is very simple,
but can be costly in model estimation. Because each missing value is assigned the same
imputation value, the distribution of the variable becomes skewed and variance is therefore
underestimated.

Our work gives light to a few follow up questions, both analytical and administrative. First,
our work highlights one of the major problems that food security analysts face: a lack of
data to use in modeling and decision making. While it is impossible to collect missing
data from the past, quality data collection is imperative moving forward. Investing in high
quality data collection will only lead to improved domestic and international response to
food insecurity. Another important dimension of understanding food security is correlation
between drivers. Modeling the interplay of important food security drivers could show how
or why countries may struggle to become food secure. The importance of feature selection
must also be mentioned, as understanding relevant food insecurity indicators is paramount
in being able to direct relief and aid. This study is important helping governments and
nonprofits in their endeavor to provide timely aid to food insecure regions.

Attribution: In the abstract section, Amy wrote the first draft outline; David wrote second
outline and proofread; David wrote paragraphs, edited, and proofread. In the introduction
section, Amy wrote the outline and paragraphs; David edited paragraphs and proofread.
In the literature section, Charlie wrote the outline; Charlie and David wrote paragraphs;
Amy and David proofread. In the data section, Nathaniel created tables, wrote/compiled
the readme file, and wrote outline and paragraphs; Amy and David added to writing and
proofread. In the problem description section, Charlie and David wrote outline; Charlie
wrote paragraphs. Amy added to writing and added equations; David proofread. In
the results section, Charlie and David wrote outline; Charlie wrote paragraphs; Nathaniel
computed regression models and created tables; David proofread. In the conclusion section,
Amy wrote outline; Charlie wrote paragraphs; Amy, Charlie, and David added to writing;
Amy and David proofread.
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Table 1: Food Security Indicators by Country
Means and (Standard Errors)
{Argentina, Bolivia, Brazil, Chile, Ecuador}

Food Security Indicator Argentina Bolivia Brazil Chile Ecuador
Source - FAO

Average dietary energy supply adequacy (%) (3-
year Average)

131.3 100.9 132.1 121.9 106.7

(2.31) (3.17) (1.29) (0.88) (5.29)
Value of crop and livestock exports (in millions of
dollars)

36035.85 1445.68 77443.55 10956.67 5305.41

(4011.68) (304.20) (6465.75) (939.63) (665.56)
Value of crop and livestock imports (in millions of
dollars)

2321.79 681.92 9861.30 5772.40 1957.61

(913.56) (113.79) (959.61) (763.43) (227.71)
Total agricultural emissions (in CO2 equivalent
teragrams)

111.61 24.03 447.72 10.48 12.60

(4.52) (0.68) (6.56) (0.82) (1.08)
Source - World Bank (1) (2) (3) (4) (5)
Personal remittances, received (% of GDP) 0.103 3.856 0.137 0.025 2.854

(0.026) (0.482) (0.024) (0.002) (0.423)
Agriculture, forestry, and fishing, value added
(annual % growth)

5.131 4.260 3.527 1.892 3.492

(16.265) (2.419) (5.592) (4.173) (3.118)
Agriculture, forestry, and fishing, value added (%
of GDP)

6.072 10.638 4.413 3.639 9.212

(0.720) (0.902) (0.222) (0.224) (0.370)
Adjusted net national income per capita (annual
% growth)

0.820 2.894 0.419 3.021 0.916

(5.711) (0.987) (2.959) (3.517) (3.844)
Official exchange rate (LCU per US$, period
average)

14.29 6.92 2.75 587.01 1.00

(14.108) (0.034) (0.857) (87.028) (0)
Employment in agriculture - female (% of female
employment)

0.156 29.830 5.232 4.917 22.803

(0.133) (1.309) (1.006) (0.286) (2.513)
Employment in agriculture (% of employment) 0.431 29.728 10.577 9.604 27.509

(0.386) (1.149) (1.206) (0.513) (1.293)
Food imports (% of merchandise imports) 3.601 7.666 5.427 8.629 9.113

(1.733) (0.492) (0.938) (1.178) (1.458)
Food exports (% of merchandise exports) 55.854 15.342 33.817 21.989 39.407

(4.246) (2.138) (2.464) (3.600) (9.685)
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Table 2: Food Security Indicators by Country
Means and (Standard Errors)
{El Salvador, Guatemala, Honduras, Nicaragua, Peru}

Food Security Indicator El Salvador Guatemala Honduras Nicaragua Peru
Source - FAO

Average dietary energy supply adequacy (%)
(3-year Average)

114.1 112.9 110.0 111.5 116.2

(0.99) (1.66) (3.71) (1.72) (2.49)
Value of crop and livestock exports (in
millions of dollars)

1020.91 4844.30 2180.86 1872.86 5163.97

(111.50) (510.35) (311.09) (268.10) (1196.37)
Value of crop and livestock imports (in
millions of dollars)

1793.88 2482.98 1502.63 9533.19 4301.07

(196.09) (332.03) (166.63) (114.35) (479.08)
Total agricultural emissions (in CO2

equivalent teragrams)
2.51 8.76 6.10 9.2 23.36

(0.24) (0.40) (0.23) (0.79) (0.27)
Source - World Bank (1) (2) (3) (4) (5)
Personal remittances, received (% of GDP) 19.019 10.962 17.732 10.189 1.470

(1.02) (1.46) (1.83) (1.32) (0.11)
Agriculture, forestry, and fishing, value
added (annual % growth)

0.200 2.887 4.462 2.367 3.157

(5.08) (1.65) (3.73) (3.30) (3.31)
Agriculture, forestry, and fishing, value
added (% of GDP)

5.913 10.123 12.336 16.339 6.874

(0.78) (0.62) (1.00) (1.27) (0.14)
Adjusted net national income per capita
(annual % growth)

1.411 2.095 1.622 2.104 3.887

(2.18) (2.05) (3.31) (4.47) (3.59)
Official exchange rate (LCU per US$, period
average)

1.00 7.71 21.53 26.86 3.89

(0) (0.20) (2.10) (3.96) (0.29)
Employment in agriculture - female (% of
female employment)

4.457 10.871 9.346 8.387 26.563

(0.99) (1.53) (1.38) (0.65) (0.43)
Employment in agriculture (% of
employment)

19.007 31.716 32.033 30.477 27.838

(1.76) (1.12) (3.54) (0.55) (0.38)
Food imports (% of merchandise imports) 16.829 14.047 17.811 15.698 10.860

(0.86) (0.83) (1.00) (1.35) (0.78)
Food exports (% of merchandise exports) 20.224 44.366 60.005 52.654 18.819

(2.19) (2.61) (5.51) (12.66) (2.73)
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Table 3: GFSI Score by Country

Country 2012 2013 2014 2015 2016 2017 2018 2019 2020
Argentina 61.4 62.7 62.1 61.3 64 63.3 65.7 65.0 62.7
Bolivia 54.7 54.4 57.5 62.1 61.0 61.4 61.9 60.6 60.0
Brazil 65.1 66.4 65.8 66.6 69.5 71.7 69.5 66.6 64.1
Chile 68.5 68.8 68.4 69.0 69.1 71.2 72.8 73.0 70.2
Ecuador 57.6 58.3 57.5 59.7 60.4 60.9 60.7 59.9 57.9
El Salvador 59.1 59.3 58.9 61.2 59.6 58.1 60.5 60.6 59.0
Guatemala 52.4 53.0 57.5 53.5 56.9 55.1 57.8 56.5 56.2
Honduras 53.7 54.8 56.9 59.5 57.3 56.5 58.9 58.7 58.2
Nicaragua 52.5 53.2 53.1 58.2 58.4 55.5 54.8 53.5 54.4
Peru 57.6 60.8 59.3 62.2 63.1 64.2 63.1 65.3 65.7

The distribution of all GFSI scores has the following notable percentiles:

25
th

percentile - 49.4; 50
th

percentile - 62.0; 75
th

percentile - 72.1; 100
th

percentile - 85.3

High performing countries for comparison: United States - 77.5, Canada - 77.2, United Kingdom - 78.5

Low performing countries for comparison: Yemen - 35.7, Rwanda - 38.8, Syria - 40.0

Table 4: Model Results
R2 and Mean Squared Error

Metric OLS Ridge Random Forest
R2 0.703 0.860 0.902
MSE 6.967 2.701 1.890

Table 5: Top Ten Features from Pruned Random Forest Results
Ranked in Descending Order

Feature Mean Decrease in Impurity
Average dietary energy supply adequacy (%) (3-Year Average) Lag 2 0.313

Personal remittances, received (% of GDP) Lag 2 0.125
Value of Crop and Livestock Imports (in millions of dollars) Lag 1 0.100
Value of Crop and Livestock Imports (in millions of dollars) Lag 2 0.058
Agriculture, forestry, and fishing, value added (% of GDP) Lag 1 0.057

Average dietary energy supply adequacy (%) (3-Year Average) Lag 1 0.051
Official exchange rate (LCU per US$, period average) Lag 2 0.043

Agriculture, forestry, and fishing, value added (% of GDP) Lag 2 0.039
Official exchange rate (LCU per US$, period average) Lag 1 0.035

Value of Crop and Livestock Exports (in millions of dollars) Lag 1 0.033
Lag 1 represents the feature data are collected one year prior. Lag 2 represents the data are collected 2 years prior.
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